Identifying the microtearing modes in the pedestal of DIII-D H-modes using gyrokinetic simulations

2021 ◽  
Author(s):  
Ehab Hassan ◽  
David R Hatch ◽  
Michael Halfmoon ◽  
Max Curie ◽  
Michael Kotschenreuther ◽  
...  

Abstract Recent evidence points toward the microtearing mode (MTM) as an important fluctuation in the H-mode pedestal for anomalous electron heat transport. A study of the instabilities in the pedestal region carried out using gyrokinetic simulations to model an ELMy H-mode DIII-D discharge (USN configuration, 1.4 MA plasma current, and 3 MW heating power) is presented. The simulations produce MTMs, identified by predominantly electromagnetic heat flux, small particle flux, and a substantial degree of tearing parity. The magnetic spectrogram from Mirnov coils exhibits three distinct frequency bands---two narrow bands at lower frequency ($\sim$35-55 kHz and $\sim$70-105 kHz) and a broader band at higher frequency ($\sim$300-500 kHz). Global linear GENE simulations produce MTMs that are centered at the peak of the $\omega_*$ profile and correspond closely with the bands in the spectrogram. The three distinctive frequency bands can be understood from the basic physical mechanisms underlying the instabilities. For example (i) instability of certain toroidal mode numbers (n) is controlled by the alignment of their rational surfaces with the peak in the $\omega^*$ profile, and (ii) MTM instabilities in the lower n bands are the conventional collisional slab MTM, whereas the higher n band depends on curvature drive. While many features of the modes can be captured with the local approximation, a global treatment is necessary to quantitatively reproduce the detailed band gaps of the low-n fluctuations. Notably, the transport signatures of the MTM are consistent with careful edge modeling by SOLPS.

2019 ◽  
Vol 30 ◽  
pp. 06002
Author(s):  
Konstantin Kobrin ◽  
Vyacheslav Rudakov ◽  
Mikhail Manuilov

A new compact design of diplexer with high electrical performances is proposed for base station antennas operating within frequency bands 2.3–2.4/2.49–2.69 GHz. The diplexer consists of two interdigital band-pass filters and coaxial power divider. Proposed design has high potential from view poin of implementation of wide-band as well as medium and narrow bands filters. The fabricated diplexer shows the following measured characteristics: reflection coefficient is -18 dB within passbands, insertion loss is -0.28 dB, isolation of ports is -30 dB. Diplexer has the relatively simple easy to manufacture design and compact dimensions, so it may be directly integrated into the base station antennas.


2018 ◽  
Vol 120 (2) ◽  
pp. 681-692 ◽  
Author(s):  
Siddhesh Salelkar ◽  
Gowri Manohari Somasekhar ◽  
Supratim Ray

Local field potential (LFP) recorded with a microelectrode reflects the activity of several neural processes, including afferent synaptic inputs, microcircuit-level computations, and spiking activity. Objectively probing their contribution requires a design that allows dissociation between these potential contributors. Earlier reports have shown that the primate lateral geniculate nucleus (LGN) has a higher temporal frequency (drift rate) cutoff than the primary visual cortex (V1), such that at higher drift rates inputs into V1 from the LGN continue to persist, whereas output ceases, permitting partial dissociation. Using chronic microelectrode arrays, we recorded spikes and LFP from V1 of passively fixating macaques while presenting sinusoidal gratings drifting over a wide range. We further optimized the gratings to produce strong gamma oscillations, since recent studies in rodent V1 have reported LGN-dependent narrow-band gamma oscillations. Consistent with earlier reports, power in higher LFP frequencies (above ~140 Hz) tracked the population firing rate and were tuned to preferred drift rates similar to those for spikes. Significantly, power in the lower (up to ~40 Hz) frequencies increased transiently in the early epoch after stimulus onset, even at high drift rates, and had preferred drift rates higher than for spikes/high gamma. Narrow-band gamma (50–80 Hz) power was not strongly correlated with power in high or low frequencies and had much lower preferred temporal frequencies. Our results demonstrate that distinct frequency bands of the V1 LFP show diverse tuning profiles, which may potentially convey different attributes of the underlying neural activity. NEW & NOTEWORTHY In recent years the local field potential (LFP) has been increasingly studied, but interpreting its rich frequency content has been difficult. We use a stimulus manipulation that generates different tuning profiles for low, gamma, and high frequencies of the LFP, suggesting contributions from potentially different sources. Our results have possible implications for design of better neural prosthesis systems and brain-machine interfacing applications.


2019 ◽  
Vol 203 ◽  
pp. 03001
Author(s):  
Simon J. Freethy ◽  
Tobias Görler ◽  
Alex J. Creely ◽  
Garrard D. Conway ◽  
Severin S. Denk ◽  
...  

Guided by predictions from nonlinear gyrokinetic simulations, two new turbulence diagnostics were designed and installed at ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer (105-128 GHz, 2nd harmonic X-mode), introduces a novel channel comb arrangement. This allows measurements of high radial resolution profiles (0:5 < r/a < 0:8) of low-k (k⍬⍴s < 0:3) temperature fluctuation amplitudes, frequency spectra and radial correlation length profiles in unprecedented detail. The second diagnostic is formed by the addition of two W-band and one V-band X-mode reflectometers on the same line of sight as the CECE to enable measurements of the phase angle between turbulent density and temperature fluctuations. Historically, the radial alignment between reflectometer and radiometer has been a challenge due to the requirement that alignment is achieved within a radial correlation length (< 5 10 mm). This challenge is significantly alleviated by using the CECE channel comb arrangement and the maximal coherence between reflectometer and radiometer can be unambiguously captured. Measurements of these quantities have been made in an AUG L-mode plasma, at the same radial location and have provided simultaneous quantitative constraints on realistic gyrokinetic simulations [Physics of Plasmas 25, 055903 (2018)] using the gyrokinetic code GENE. Here we present diagnostic detail for this study.


2009 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
Wolf Singer

Our intuition assumes that there is a centre in our brain in which all relevant information converges and where all decisions are reached. To neurobiologists, the brain presents itself as a highly distributed system in which a very large number of processes occur simultaneously and in parallel without requiring coordination by a central convergence centre. The specific architecture resembles, in many respects, small world networks and raises the question of how the multiple operations occurring in parallel are bound together in order to give rise to coherent perception and action. Based on data obtained with massive parallel recordings, the hypothesis will be forwarded that temporal coherence serves as an important organizing principle and that this coherence is achieved by the synchronization of oscillatory activity in distinct frequency bands.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Leonardo Dalla Porta ◽  
Daniel M. Castro ◽  
Mauro Copelli ◽  
Pedro V. Carelli ◽  
Fernanda S. Matias

2021 ◽  
Author(s):  
Gurpreet Bharti ◽  
Jagtar Singh Sivia

Abstract In this manuscript, a compact wideband antenna using a partial ground plane has been designed by the hybridization of Minkowski fractal curves on the hexagonal radiating patch. Further, the corners of this partial ground plane have been truncated and the Minkowski curves superimposed on each truncated corner and finally, the L – shaped stub has been employed to enhance the performance parameters of the antenna in terms of the number of frequency bands and impedance bandwidth. Different prototypes of an antenna have been compared and found that prototype with L – shaped stub and ground plane with truncated corners using Minkowski curve (proposed prototype) exhibits better antenna performance parameters. The proposed prototype of the antenna reveals the maximum bandwidth of 10.86GHz (140.10%) with four distinct frequency bands 4.4, 7.1, 10.8, 16.3GHz. Designed antenna has also been fabricated and tested for authentication of simulated results with measured results and found in reasonable agreement with each other. The proposed antenna uses a low-cost FR4 substrate with a compact overall size of 24×30×1.6mm3. Due to the wider bandwidth, stable radiation pattern, and gain at the desired frequency points, the proposed antenna can be used for different wireless applications.


Author(s):  
Penchala Reddy Sura ◽  
S. Narayana Reddy

This paper presents an inexpensive and simple dual-band bisected psi antenna for 3G, Wi-Fi, WLAN, and WiMAX applications is presented. The antenna comprises a bisected psi-shaped patch on a low-price FR4 substrate with a cropped ground plane on the other side, and is fed by a 50 Ω microstrip line. It operates at two distinct frequency bands of 1.87–2.76 GHz and 5.16–5.75 GHz with |S11|≤ -10 dB


Sign in / Sign up

Export Citation Format

Share Document