scholarly journals The RyR2-R2474S Mutation Sensitizes Cardiomyocytes and Hearts to Catecholaminergic Stress-Induced Oxidation of the Mitochondrial Glutathione Pool

2021 ◽  
Vol 12 ◽  
Author(s):  
Jörg W. Wegener ◽  
Ahmed Wagdi ◽  
Eva Wagner ◽  
Dörthe M. Katschinski ◽  
Gerd Hasenfuss ◽  
...  

Missense mutations in the cardiac ryanodine receptor type 2 (RyR2) characteristically cause catecholaminergic arrhythmias. Reminiscent of the phenotype in patients, RyR2-R2474S knockin mice develop exercise-induced ventricular tachyarrhythmias. In cardiomyocytes, increased mitochondrial matrix Ca2+ uptake was recently linked to non-linearly enhanced ATP synthesis with important implications for cardiac redox metabolism. We hypothesize that catecholaminergic stimulation and contractile activity amplify mitochondrial oxidation pathologically in RyR2-R2474S cardiomyocytes. To investigate this question, we generated double transgenic RyR2-R2474S mice expressing a mitochondria-restricted fluorescent biosensor to monitor the glutathione redox potential (EGSH). Electrical field pacing-evoked RyR2-WT and RyR2-R2474S cardiomyocyte contractions resulted in a small but significant baseline EGSH increase. Importantly, β-adrenergic stimulation resulted in excessive EGSH oxidization of the mitochondrial matrix in RyR2-R2474S cardiomyocytes compared to baseline and RyR2-WT control. Physiologically β-adrenergic stimulation significantly increased mitochondrial EGSH further in intact beating RyR2-R2474S but not in RyR2-WT control Langendorff perfused hearts. Finally, this catecholaminergic EGSH increase was significantly attenuated following treatment with the RyR2 channel blocker dantrolene. Together, catecholaminergic stimulation and increased diastolic Ca2+ leak induce a strong, but dantrolene-inhibited mitochondrial EGSH oxidization in RyR2-R2474S cardiomyocytes.

2018 ◽  
Vol 151 (2) ◽  
pp. 131-145 ◽  
Author(s):  
Duilio M. Potenza ◽  
Radoslav Janicek ◽  
Miguel Fernandez-Tenorio ◽  
Emmanuel Camors ◽  
Roberto Ramos-Mondragón ◽  
...  

During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)–mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent “hyperphosphorylation” of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca2+ signaling and excitation–contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A+/+). We assessed ECC gain by using whole-cell patch–clamp recordings and confocal Ca2+ imaging during β-ARs stimulation with isoproterenol (Iso) and consistent SR Ca2+ loading and L-type Ca2+ current (ICa) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca2+ spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca2+ pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A+/+ myocytes. Using Ca2+ spark recovery analysis, we found that mutant RyR Ca2+ sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca2+ waves and increases latency to the first spontaneous Ca2+ release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during β-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.


1980 ◽  
Vol 190 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Victor A. Zammit

1. Oxygen-consumption rates owing to oxidation of octanoate or octanoylcarnitine by isolated mitochondria from livers of fed, starved and glucagon-treated virgin or 12-day-lactating animals were measured under State-3 and State-4 conditions, in the presence or absence of l-malate and inhibitors of tricarboxylic acid-cycle activity (malonate and fluorocitrate). 2. Mitochondria from fed lactating animals had a slightly lower rate of octanoylcarnitine oxidation than did those of fed virgin animals, whereas the rates of octanoate oxidation were unaffected. 3. Starvation of virgin animals for 24h or 48h resulted in a large (70–100%) increase in mitochondrial octanoylcarnitine oxidation; rates of octanoate oxidation were either unaffected (24 and 48h starvation in the absence of malonate and fluorocitrate) or diminished by 30% (48h starvation in the presence of inhibitors). In lactating animals, 24h starvation resulted in a smaller increase in the rate of octanoylcarnitine oxidation than that obtained for mitochondria from virgin rats. 4. Glucagon treatment (by intra-abdominal injection) of fed virgin and lactating rats increased the rate of mitochondrial oxidation of both octanoylcarnitine and octanoate. Injection of glucagon into 48h-starved virgin rats did not increase further the already elevated rate of octanoylcarnitine oxidation, but reversed the inhibition of octanoate β-oxidation observed for these mitochondria in the presence of malonate and fluorocitrate. 5. It is suggested that glucagon activates octanoylcarnitine oxidation by increasing the activity of the carnitine/acylcarnitine transport system [Parvin & Pande (1979) J. Biol. Chem.254, 5423–5429] and that the increase in octanoate oxidation by mitochondria from glucagon-treated animals is caused by the increased rate of ATP synthesis in these mitochondria. 6. The results are discussed in relation to the increased capacity of the liver to oxidize long-chain fatty acids and carnitine esters of medium-chain fatty acids under conditions characterized by increased ketogenesis.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2319-2335 ◽  
Author(s):  
Kevin Lüthy ◽  
Davide Mei ◽  
Baptiste Fischer ◽  
Maurizio De Fusco ◽  
Jef Swerts ◽  
...  

AbstractGenetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in all three affected patients, but exercise-induced dystonia persisted into adulthood in two. Furthermore, we identified three additional sporadic paediatric patients with a remarkably similar phenotype, two of whom had compound heterozygous mutations consisting of an in-frame deletion I81_K84 and an A500V mutation, and the third carried T182M and G511R missense mutations, overall revealing that all six patients harbour a missense mutation in the subdomain of TLDc between residues 500 and 511. We solved the crystal structure of the conserved Drosophila TLDc domain. This allowed us to predict destabilizing effects of the G501R and G511R mutations and, to a lesser degree, of R360H and potentially A500V. Next, we characterized the functional consequences of a strong and a weak TLDc mutation (TBC1D24G501R and TBC1D24R360H) using Drosophila, where TBC1D24/Skywalker regulates synaptic vesicle trafficking. In a Drosophila model neuronally expressing human TBC1D24, we demonstrated that the TBC1D24G501R TLDc mutation causes activity-induced locomotion and synaptic vesicle trafficking defects, while TBC1D24R360H is benign. The neuronal phenotypes of the TBC1D24G501R mutation are consistent with exacerbated oxidative stress sensitivity, which is rescued by treating TBC1D24G501R mutant animals with antioxidants N-acetylcysteine amide or α-tocopherol as indicated by restored synaptic vesicle trafficking levels and sustained behavioural activity. Our data thus show that mutations in the TLDc domain of TBC1D24 cause Rolandic-type focal motor epilepsy and exercise-induced dystonia. The humanized TBC1D24G501R fly model exhibits sustained activity and vesicle transport defects. We propose that the TBC1D24/Sky TLDc domain is a reactive oxygen species sensor mediating synaptic vesicle trafficking rates that, when dysfunctional, causes a movement disorder in patients and flies. The TLDc and TBC domain mutations’ response to antioxidant treatment we observed in the animal model suggests a potential for combining antioxidant-based therapeutic approaches to TBC1D24-associated disorders with previously described lipid-altering strategies for TBC domain mutations.


2001 ◽  
Vol 90 (3) ◽  
pp. 1137-1157 ◽  
Author(s):  
David A. Hood

Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca2+ fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c- junand nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.


2001 ◽  
Vol 95 (3) ◽  
pp. 766-770 ◽  
Author(s):  
Yasuo Tsutsumi ◽  
Shuzo Oshita ◽  
Takashi Kawano ◽  
Hiroshi Kitahata ◽  
Yoshinobu Tomiyama ◽  
...  

Background Accumulating evidence suggests that mitochondrial rather than sarcolemmal adenosine triphosphate-sensitive K+ (K(ATP)) channels may have an important role in the protection of myocardium during ischemia. Because both lidocaine and mexiletine are frequently used antiarrhythmic drugs during myocardial ischemia, it is important to investigate whether they affect mitochondrial K(ATP) channel activities. Methods Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. The authors measured flavoprotein fluorescence to evaluate mitochondrial redox state. Lidocaine or mexiletine was applied after administration of diazoxide (25 microM), a selective mitochondrial K(ATP) channel opener. The redox signal was normalized to the baseline flavoprotein fluorescence obtained during exposure to 2,4-dinitrophenol, a protonophore that uncouples respiration from ATP synthesis and collapses the mitochondrial potential. Results Diazoxide-induced oxidation of flavoproteins and the redox changes were inhibited by 5-hydroxydecanoic acid, a selective mitochondrial K(ATP) channel blocker, suggesting that flavoprotein fluorescence can be used as an index of mitochondrial oxidation mediated by mitochondrial K(ATP) channels. Lidocaine (10(-3) to 10 mM) and mexiletine (10(-3) to 10 mM) reduced oxidation of the mitochondrial matrix in a dose-dependent manner with an EC50 of 98+/-63 microM for lidocaine and 107+/-89 microM for mexiletine. Conclusions Both lidocaine and mexiletine reduced flavoprotein fluorescence induced by diazoxide in rat ventricular myocytes, indicating that these antiarrhythmic drugs may produce impairment of mitochondrial oxidation mediated by mitochondrial K(ATP) channels.


2017 ◽  
Vol 122 (5) ◽  
pp. 1208-1217 ◽  
Author(s):  
Ryan M. Broxterman ◽  
Gwenael Layec ◽  
Thomas J. Hureau ◽  
Markus Amann ◽  
Russell S. Richardson

Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy (31P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Qtw) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATPOX) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATPOX normalized to force production (ATPOX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min−1·N−1), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min−1·N−1). Additionally, the pre- to postexercise change in Qtw (−52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH ( r = 0.75) and [Formula: see text] concentration ( r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a “slow component-like” increase in intramuscular ATPOX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration). NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu.


2007 ◽  
Vol 103 (3) ◽  
pp. 1093-1098 ◽  
Author(s):  
Bente Klarlund Pedersen ◽  
Thorbjörn C. A. Åkerström ◽  
Anders R. Nielsen ◽  
Christian P. Fischer

During the past 20 yr, it has been well documented that exercise has a profound effect on the immune system. With the discovery that exercise provokes an increase in a number of cytokines, a possible link between skeletal muscle contractile activity and immune changes was established. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an “exercise factor,” which could mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We suggest that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either paracrine or endocrine effects should be classified as “myokines.” Since the discovery of interleukin (IL)-6 release from contracting skeletal muscle, evidence has accumulated that supports an effect of IL-6 on metabolism. We suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines should be named “myokines.” Interestingly, recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. Thus skeletal muscle has the capacity to express several myokines. To date the list includes IL-6, IL-8, and IL-15, and contractile activity plays a role in regulating the expression of these cytokines in skeletal muscle. The present review focuses on muscle-derived cytokines, their regulation by exercise, and their possible roles in metabolism and skeletal muscle function and it discusses which cytokines should be classified as true myokines.


2018 ◽  
Author(s):  
Cecilia Mancini ◽  
Eriola Hoxha ◽  
Luisa Iommarini ◽  
Alessandro Brussino ◽  
Uwe Richter ◽  
...  

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but signs of ataxia were detectable by beam test at 18 months. Cerebellar pathology was negative; electrophysiological analysis showed increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls, although not statistically significant. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was also altered, in line with greatly reduced expression of Opa1 fusogenic protein L-isoforms. The mitochondrial alterations observed in MEFs were also detected in cerebella of 18-month-old heterozygous mutants, suggesting they may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Sign in / Sign up

Export Citation Format

Share Document