Carbon dots and gold nanoclusters assisted construction of a ratiometric fluorescent biosensor for detection of Gram-negative bacteria

2021 ◽  
pp. 131750
Author(s):  
Li Fu ◽  
Qingmei Chen ◽  
Li Jia
RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72471-72478 ◽  
Author(s):  
Soumen Chandra ◽  
Angshuman Ray Chowdhuri ◽  
Triveni Kumar Mahto ◽  
Arpita Samui ◽  
Sumanta kumar Sahu

In this paper, we report a one-step strategy to synthesize amikacin modified fluorescent carbon dots (CDs@amikacin) for assaying pathogenic bacteria, Escherichia coli.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2012
Author(s):  
Anju Pandey ◽  
Asmita Devkota ◽  
Zeinab Yadegari ◽  
Korsi Dumenyo ◽  
Ali Taheri

While multi-drug resistance in bacteria is an emerging concern in public health, using carbon dots (CDs) as a new source of antimicrobial activity is gaining popularity due to their antimicrobial and non-toxic properties. Here we prepared carbon dots from citric acid and β-alanine and demonstrated their ability to inhibit the growth of diverse groups of Gram-negative bacteria, including E. coli, Salmonella, Pseudomonas, Agrobacterium, and Pectobacterium species. Carbon dots were prepared using a one-pot, three-minute synthesis process in a commercial microwave oven (700 W). The antibacterial activity of these CDs was studied using the well-diffusion method, and their minimal inhibitory concentration was determined by exposing bacterial cells for 20 h to different concentrations of CDs ranging from 0.5 to 10 mg/mL. Our finding indicates that these CDs can be an effective alternative to commercially available antibiotics. We also demonstrated the minimum incubation time required for complete inhibition of bacterial growth, which varied depending on bacterial species. With 15-min incubation time, A. tumefaciens and P. aeruginosa were the most sensitive strains, whereas E. coli and S. enterica were the most resistant bacterial strains requiring over 20 h incubation with CDs.


2020 ◽  
Vol 8 (13) ◽  
pp. 2666-2672 ◽  
Author(s):  
Huibo Wang ◽  
Mengling Zhang ◽  
Yurong Ma ◽  
Bo Wang ◽  
Mingwang Shao ◽  
...  

Carbon dots derived from Artemisia argyi leaves exhibit specific antibacterial activities on Gram-negative bacteria.


2002 ◽  
Vol 68 (12) ◽  
pp. 6343-6352 ◽  
Author(s):  
Yan Y. Goh ◽  
Bow Ho ◽  
Jeak L. Ding

ABSTRACT Site-directed mutagenesis of enhanced green fluorescent protein (EGFP) based on rational computational design was performed to create a fluorescence-based biosensor for endotoxin and gram-negative bacteria. EGFP mutants (EGFPi) bearing one (G10) or two (G12) strands of endotoxin binding motifs were constructed and expressed in an Escherichia coli host. The EGFPi proteins were purified and tested for their efficacy as a novel fluorescent biosensor. After efficient removal of lipopolysaccharide from the E. coli lysates, the binding affinities of the EGFPi G10 and G12 to lipid A were established. The KD values of 7.16 × 10−7 M for G10 and 8.15 × 10−8 M for G12 were achieved. With high affinity being maintained over a wide range of pH and ionic strength, the binding of lipid A/lipopolysaccharide to the EGFPi biosensors could be measured as a concentration-dependent fluorescence quenching of the EGFP mutants. The EGFPi specifically tagged gram-negative bacteria like E. coli and Pseudomonas aeruginosa, as well as other gram-negative bacteria in contaminated water sampled from the environment. This dual function of the EGFPi in detecting both free endotoxin and live gram-negative bacteria forms the basis of the development of a novel fluorescent biosensor.


2021 ◽  
Vol 3 ◽  
Author(s):  
Asmita Devkota ◽  
Anju Pandey ◽  
Zeinab Yadegari ◽  
Korsi Dumenyo ◽  
Ali Taheri

Multidrug resistance (MDR) is a major concern in battling infectious bacterial diseases. The overuse of antibiotics contributes to the emergence of resistance by eradicating the drug-sensitive strains, leaving behind the resistant strains that multiply without any competition. Nanoparticles are becoming popular as novel antimicrobial agents that follow a different mode of action from standard antibiotics and are therefore desirable against MDR bacteria. In this study, we synthesized carbon dots from different precursors including glucosamine HCL (GlcNH2·HCl) and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA, and studied their antimicrobial effects in a diverse list of Gram-negative bacteria including Escherichia coli, Pseudomonas syringae, Salmonella enterica subsp. enterica serovar Typhimurium, Pectobacterium carotovorum, Agrobacterium tumefaciens, and Agrobacterium rhizogenes. We demonstrated the antimicrobial properties of these carbon dots against these bacteria and provided the optimum concentration and incubation times for each bacterial species. Our findings indicated that not all carbon dots carry antimicrobial properties, and there is also a variation between different bacterial species in their resistance against these carbon dots.


Author(s):  
Roger C. Wagner

Bacteria exhibit the ability to adhere to the apical surfaces of intestinal mucosal cells. These attachments either precede invasion of the intestinal wall by the bacteria with accompanying inflammation and degeneration of the mucosa or represent permanent anchoring sites where the bacteria never totally penetrate the mucosal cells.Endemic gram negative bacteria were found attached to the surface of mucosal cells lining the walls of crypts in the rat colon. The bacteria did not intrude deeper than 0.5 urn into the mucosal cells and no degenerative alterations were detectable in the mucosal lining.


Sign in / Sign up

Export Citation Format

Share Document