Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models

2021 ◽  
pp. 109963622110536
Author(s):  
Vahid Pourriahi ◽  
Mohammad Heidari-Rarani ◽  
Amir Torabpour Isfahani

The hexagonal honeycomb core sandwich panels used in the satellite structure are subjected to severe vibration during launch. Therefore, the amounts of natural frequencies of these panels are of great importance for design engineers. Three-dimensional finite element modeling of the core considering all geometric parameters (i.e., a high-fidelity model) to achieve accurate results is not cost-effective. The honeycomb core is traditionally equivalent to a homogenized continuum core (i.e., a low-fidelity model) using simple analytical relations with ignoring the adhesive layer at the double cell-walls and radius of inclined cell-wall curvature. In this study, analytical formulations are first presented for the prediction of the equivalent elastic properties of a hexagonal aluminum honeycomb with considering all geometric parameters including adhesive layer thickness, cell-wall thickness, inclined cell-wall length, radius of inclined cell-wall curvature at the intersection, internal cell-wall angle, and honeycomb height. Then, two aluminum honeycomb core sandwich beams with free-free boundary conditions are modeled and analyzed in Abaqus finite element software, one with 3D high-fidelity core and the other with 3D low-fidelity core. In order to validate the results of the equivalent model, the modal analysis test was performed and the experimental natural frequencies were compared. The obtained results show a good agreement between the 3D low-fidelity and high-fidelity finite element models and experimental results. In addition, the influence of the above-mentioned geometric parameters has been investigated on the natural frequencies of a sandwich beam. [Formula: see text]

2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


2011 ◽  
Vol 314-316 ◽  
pp. 1792-1795
Author(s):  
Hu Huang ◽  
Hong Wei Zhao ◽  
Jie Yang ◽  
Shun Guang Wan ◽  
Jie Mi ◽  
...  

In this paper, a miniaturization nanoindentation and scratch device was developed. Finite element analysis was carried out to study static and modal characteristics of x/y flexure hinge and z axis driving hinge as well as effect of geometric parameters on output performances of z axis driving hinge. Results indicated that x/y flexure hinge and z axis driving hinge had enough strength and high natural frequencies. Geometric parameters of z axis driving hinge affected output performances significantly. The model of developed device was established. Indentation experiments of Si and amorphous alloy showed that the developed miniaturization nanoindentation and scratch device worked well and can carry out indentation experiments with certain accuracy.


2007 ◽  
Vol 16 (2) ◽  
pp. 096369350701600 ◽  
Author(s):  
Buket Okutan Baba ◽  
Ronald F. Gibson

The aim of this study is to report the effect of delamination on the vibration characteristics of composite sandwich beams. The natural frequencies and corresponding vibration modes of a free-free sandwich beam with delamination of various sizes and locations are predicted using a two-dimensional finite element analysis (FEA). The presence of delamination affects the stiffness of the delaminated beam and results in differences on the natural frequencies of the beam. Assessment of the differences light the way for the existence, size and location of the delaminated region and can be used for a non-destructive evaluation of the damage characteristics of the delaminated beams. Vibration tests are conducted on fully bonded sandwich beams with carbon/epoxy laminated composite faces and foam core to verify the finite element results. Agreement between predictions of the model and experimental observations is good.


2005 ◽  
Vol 297-300 ◽  
pp. 2752-2757 ◽  
Author(s):  
Cheol Won Kong ◽  
Se Won Eun ◽  
Jae Sung Park ◽  
Ho Sung Lee ◽  
Young Soon Jang ◽  
...  

When comparing composite sandwich analysis with an exact solution, the results of finite element modeling with an ANSYS shell 91 element agreed well with the exact solution. The practical applications of the shell 91 element are demonstrated with a four-point bend test conducted on sandwich beam specimens. The specimens comprised carbon/epoxy fabric face sheets and a honeycomb core. Two kinds of honeycomb cores were used to fabricate the composite sandwich specimens: an aluminum one and a glass/phenolic one. The predictions with the shell 91 element were also agreed well with the experimental results. A variety of tests was conducted; namely, a long beam flexural test, a short beam shear test, a flatwise tensile test, a flatwise compression test and an edge compression test. The sandwich plate with the aluminum honeycomb core had a specific bending stiffness that was 1.7 to 2.0 times higher than that of the sandwich plate with the glass/ phenolic honeycomb core.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Rohan Galgalikar ◽  
Lonny L. Thompson

This study focuses on sound transmission frequency response through honeycomb core sandwich panels with in-plane orientation. Specifically, an optimization technique has been presented to determine the honeycomb unit cell geometric parameters that maximize the sound transmission loss (STL) through a sandwich panel, while maintaining constraints of constant mass and overall dimensions of panel length and height. The vibration characteristics and STL response of a sandwich panel are parameterized in terms of four honeycomb unit cell independent geometric parameters; two side lengths, cell wall thickness, and interior cell wall angle. With constraints of constant mass and overall dimensions, relationships are determined such that the number of independent variables needed to define the honeycomb cell and panel geometry is reduced to three; the integer number of unit cells in the longitudinal direction of the core, number of unit cells in the height direction, and interior cell wall angle. The optimization procedure is implemented by linking a structural acoustic finite-element (FE) model of the panel, with modefrontier, a general purpose optimization software. Optimum designs are obtained in representative frequency ranges within the resonance region of the STL response. Optimized honeycomb geometric solutions show at least 20% increase in STL response compared to standard hexagonal honeycomb core panels. It is found that the STL response is not only affected by the cell wall angle, but strongly depends also on the number of unit cells in the horizontal and vertical direction.


Author(s):  
S Rajkumar ◽  
D Ravindran ◽  
Ramesh S Sharma ◽  
VP Raghupathy

Aluminum honeycomb core is one of the most sought after material for the sandwich panel for light weight applications. While the aluminum face sheet is isotropic, the honeycomb core assumes orthotropic characteristics due to its configuration and strenuous load transfer paths. It is now well established that stiffness, dynamic, and low velocity impact response of the honeycomb core sandwich panel are critically dependent on the elastic constants of the core. An attempt is made to determine the elastic constants of orthotropic core through finite element approach simulating the load transfer and fixity boundary conditions likely to be prevalent in the unit cell of the honeycomb core. The cell wall thickness and the cell shape dictated by plastic bending limitations have also been simulated to determine their influence on the elastic constants. Further, the cell wall thickness and the bend radius have been varied and their influence on orthotropic elastic constants has been determined. The results of the study have been compared with analytical solutions proposed by researchers. The finite element procedure evolved is a simple, efficient, and quick solution methodology to accurately predict elastic constants of honeycomb core depicting the exact cell size and shape.


2011 ◽  
Vol 50-51 ◽  
pp. 843-848 ◽  
Author(s):  
Quan Bai ◽  
Ke Xiang Wei ◽  
Wen Ming Zhang

Considered electrorheological (ER) elastomers as the visco-elasticity material, a finite element model of a sandwich beam filled with ER elastomers was developed based on Hamilton’s principle and sandwich beam’s theory. Then its dynamic characteristics were analyzed. Simulation results show that natural frequencies of the sandwich beam increase and vibration amplitudes of the beam decrease as the intensity of applied electric field increases. Increased the thickness of the ER elastomers layer, natural frequencies of the beam decrease and loss factors increase. Those indicate that the dynamic characteristic of ER elastomers sandwich beams is similar as that of ER fluids beam, which can be used for vibration control of flexible structures by applied a electric field.


2014 ◽  
Vol 592-594 ◽  
pp. 2097-2101 ◽  
Author(s):  
Babu V. Ramesh ◽  
R. Vasudevan ◽  
Naveen B. Kumar

In this study, the vibration analysis of a laminated composite magnetorheological elastomer (MRE) sandwich beam is presented. The governing differential equations of motion of a sandwich beam embedding a MRE layer as core layer and laminated composite beams as the face layers are presented in a finite element formulation. The validity of the developed finite element formulation is demonstrated by comparing results in terms of the natural frequencies derived from the present finite element formulation with those in the available literature. Various parametric studies are also performed to investigate the effect of a magnetic field on the variation of the natural frequencies and loss factors of the MR elastomer composite sandwich beam under various boundary conditions. Furthermore, the effect of the thickness of the MR elastomer layer on the variation of the natural frequencies and loss factors are studied. The study suggested that the natural frequency increases with increasing magnetic field, irrespective of the boundary conditions.


2017 ◽  
Vol 61 (3) ◽  
pp. 213 ◽  
Author(s):  
Mageshwaran Subramani ◽  
Ananda Babu Arumugam ◽  
Manoharan Ramamoorthy

In this paper, the vibration analysis of uniform laminated composite sandwich beam with a viscoelastic core was studied. The governing equation of motion of the laminated composite sandwich beam has been derived based on higher order shear deformation theory (HSDT) in finite element model (FEM). The developed finite element model has been validated in terms of natural frequencies with the experimental values and the available literature. Various parametric studies have been performed to examine the impact of the core thickness, ply orientation and aspect ratio of the uniform laminated composite sandwich beam in response to free vibration for various boundary conditions. From the results it was concluded that that natural frequencies could be increased with increasing the core thickness and decreased with increasing the aspect ratio.


2013 ◽  
Vol 275-277 ◽  
pp. 111-116 ◽  
Author(s):  
Muhammad Kashif Khan ◽  
Qing Yuan Wang

Experimental and Finite Element analysis was used for the investigation of the effect of cell size and thickness on the compressive properties of Aluminium honeycomb core. Honeycomb cores were compressed experimentally in in-plane and out of plane directions. The effect of sample size, cell size and thickness on the elastic modulus, yield strength and plateau stress was investigated through FEA. It was found that the mechanical response was independent upon the sample size in in-plane direction. The smallest cell size honeycomb core was deformed at higher yield stress. Similarly, with increase in cell wall thickness, the modulus of the core increased.


Sign in / Sign up

Export Citation Format

Share Document