Fabrication of aluminum honeycomb cored carbon fabric/epoxy composite sandwich structures via vacuum assisted resin infusion technique

2021 ◽  
Author(s):  
Arunachalam Vasanthanathan ◽  
Chandrasekaran Navin Kumar
Author(s):  
Mehmet Ziya Okur ◽  
Serkan Kangal ◽  
Metin Tanoğlu

Lightweight composite sandwich structures are laminated composite structures that are composed of thin stiff face sheets bonded to a thicker lightweight core in between. These structures have high potential to be used in marine, aerospace, defense and civil engineering applications due to their high strength to weight ratios and energy absorption capacity.In this study, composite sandwich structures were developed with carbon fiber reinforced polymer composite face sheets and aluminum honeycomb core materials with various thicknesses. Carbon fiber/epoxy composite face sheets were fabricated with lamination of [0/90]s carbon fabrics by vacuum infusion technique. Al honeycomb layers were sandwiched together with the face sheets using a thermosetting adhesive. Mechanical tests were carried out to determine the mechanical behavior of face sheets, Al cores and the composite structure. Effect of core thickness on the mechanical properties of the sandwich was investigated.


2019 ◽  
Vol 54 (16) ◽  
pp. 2159-2171
Author(s):  
William T King ◽  
William E Guin ◽  
J Brian Jordon ◽  
Mark E Barkey ◽  
Paul G Allison

This work presents an experimental and numerical investigation of the effects of pre-existing core damage on aluminum honeycomb core composite sandwich structures. Quasi static flexural and compression experiments were performed, where the effects of core damage on the shear modulus and Young's modulus were quantified. In addition, finite element analysis was performed on the sandwich structures to elucidate the effects of the core damage on the structural response. Comparisons of experimental and finite element responses are presented for sandwich structures consisting of carbon fiber facesheets and an aluminum honeycomb core. The pre-existing core damage is observed to cause up to an 8% reduction in shear modulus and a 9% reduction in elastic modulus. It is also determined that the presence of pre-existing core damage results in an asymmetrical compressive load distribution in the composite structures.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document