dopamine and serotonin receptors
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
С.Г. Грибакин

Кишечная микробиота представляет собой сложную экосистему, образованную сообществом микроорганизмов, которое расценивается как самостоятельный метаболический орган. Преобладающими микроорганизмами в толстой кишке здорового младенца являются бифидобактерии и лактобациллы, которые конкурентно подавляют рост условно-патогенных и патогенных микробов и способствуют развитию иммунной системы. На протяжении последних 10 лет исследования в области молекулярной биологии и строения генома Bifidobacterium и Lactobacillus были сфокусированы на таких проблемах, как взаимодействие с иммунной системой и перспективы их использования при антибиотик-ассоциированной диарее и при диареях в педиатрической практике, а также при синдроме раздраженного кишечника и при воспалительных заболеваниях кишечника. За последние годы выполнен целый ряд клинических исследований, посвященных использованию пробиотиков в целях лечения и профилактики диареи у детей, а также подготовлено несколько подробных метаанализов, которые дают достаточно полное представление о возможностях использования монокомпонентных и комбинированных пробиотических препаратов. Получены важные факты в пользу того, что определенные штаммы Lactobacilli и Bifidobacteria являются иммуномодуляторами и способны влиять на иммунную регуляцию посредством воздействия на баланс между провоспалительными и противовоспалительными цитокинами. Еще одним механизмом действия пробиотических препаратов является их влияние на допаминовые и серотониновые рецепторы, благодаря чему установлено положительное влияние пробиотиков у пациентов, находящихся в состоянии стресса и при депрессивных состояниях. В статье показано, что комбинированные пробиотики обладают синергическим действием, оказывают антибактериальное действие и иммуномодулирующий эффект и обладают доказанной клинической эффективностью при диарее и дисбактериозе у детей. Intestinal microbiota is a complex ecosystem of the community of enteric microorganisms and is estimated as an individual metabolic organ. Bifidobacteria and Lactobacilli are the predominant microbes in a colon of healthy infants, they are able to suppress a growth of pathogenic and conditionally pathogenic microorganisms and support a development of immune system. Over the past 10 years, research in the field of molecular biology and genome structure of Bifidobacterium and Lactobacillus has focused on such problems as interaction with the immune system and the prospects for their use in antibiotic-associated diarrhea and diarrhea in pediatric practice, as well as in irritable bowel syndrome and inflammatory bowel disease. In recent years, a number of clinical studies have been carried out on the use of probiotics for the treatment and prevention of diarrhea in children, and several detailed analytical meta-analyzes have been prepared, which give a fairly complete picture of the possibilities of using monocomponent and combined probiotic drugs. Important facts have been obtained in favor of the fact that certain strains of Lactobacilli and Bifidobacteria are immunomodulators and are able to influence immune regulation by affecting the balance between pro-inflammatory and anti-inflammatory cytokines. Another mechanism of action of probiotic drugs is their effect on dopamine and serotonin receptors, due to which a positive effect of probiotics has been established in patients under stress and in depression. The article shows that combined probiotic remedies are characterized by synergic action and have an antibacterial effect and immune modulation. Combined probiotics are characterized by synergic activity and support a development of immune system. Due to these properties they have a clinically proven effect in diarrhea and disbiosis in infants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paula Soria-Chacartegui ◽  
Gonzalo Villapalos-García ◽  
Pablo Zubiaur ◽  
Francisco Abad-Santos ◽  
Dora Koller

Olanzapine, aripiprazole and risperidone are atypical antipsychotics or neuroleptics widely used for schizophrenia treatment. They induce various adverse drug reactions depending on their mechanisms of action: metabolic effects, such as weight gain and alterations of glucose and lipid metabolism; hyperprolactinemia and extrapyramidal effects, such as tremor, akathisia, dystonia, anxiety and distress. In this review, we listed polymorphisms associated with individual response variability to olanzapine, aripiprazole and risperidone. Olanzapine is mainly metabolized by cytochrome P450 enzymes, CYP1A2 and CYP2D6, whereas aripiprazole and risperidone metabolism is mainly mediated by CYP2D6 and CYP3A4. Polymorphisms in these genes and other enzymes and transporters, such as enzymes from the uridine 5'-diphospho-glucuronosyltransferase (UGT) family and ATP-binding cassette sub-family B member 1 (ABCB1), are associated to differences in pharmacokinetics. The three antipsychotics act on dopamine and serotonin receptors, among others, and several studies found associations between polymorphisms in these genes and variations in the incidence of adverse effects and in the response to the drug. Since olanzapine is metabolized by CYP1A2, a lower starting dose should be considered in patients treated with fluvoxamine or other CYP1A2 inhibitors. Regarding aripiprazole, a reduced dose should be administered in CYP2D6 poor metabolizers (PMs). Additionally, a reduction to a quarter of the normal dose is recommended if the patient is treated with concomitant CYP3A4 inhibitors. Risperidone dosage should be reduced for CYP2D6 PMs and titrated for CYPD6 ultrarapid metabolizers (UMs). Moreover, risperidone dose should be evaluated when a CYP2D6, CYP3A4 or ABCB1 inhibitor is administered concomitantly.


2021 ◽  
Vol 11 (13) ◽  
pp. 6082
Author(s):  
Bárbara Costa ◽  
Rita Matos ◽  
Irina Amorim ◽  
Fátima Gärtner ◽  
Nuno Vale

The breast cancer therapies available are insufficient, especially since first-line treatments, such as paclitaxel, result in drug resistance and their toxicity often limits their concentration. Strategies like drug repurposing are beneficial, and novel treatments can emerge by repurposing drugs that interfere with the dopamine and serotonin receptors, and thus influence tumor growth. In this study, the MTT assay was used to test the efficacy of such repurposed drugs commonly used for neurodegenerative disorders that act on the dopamine and serotonin receptors to reduce the MCF-7 cell’s viability, either by their single use or in combination with the reference drug paclitaxel. Furthermore, the expression of vimentin and E-cadherin was assayed by immunofluorescence. The dopamine receptor-altering drugs benztropine and thioridazine resulted in the strongest reduction of cell viability when combined with paclitaxel, which may be connected to the alteration of E-cadherin rather than vimentin expression. More studies are needed to understand the mechanism of action of the combinations tested and the efficacious role of dopamine and serotonin.


2021 ◽  
Vol 20 (2) ◽  
pp. 8-17
Author(s):  
A.A. Vasilyuk ◽  
◽  
V.I. Kozlovsky ◽  

Piperidine is one of the most common heterocycles, and its derivatives are found in many pharmacological groups, including neurotropic drugs. These compounds are numerous among analgesics, and, in addition to “classical” promedol, fentanyl and its derivatives, the paper presents the results of studying new compounds with analgesic activity and piperidine cycle. Reviews of such piperidine antipsychotics as haloperidol and risperidone have been considered, and new compounds showing antipsychotic activity through their effects on dopamine and serotonin receptors have been elucidated. The data on the influence of methylphenidate on the brain in case of attention deficit/ hyperactivity disorder (ADHD) have been analyzed, which help to understand the disturbances occurring in this disease. Tiagabine has been considered as an antiepileptic agent reducing the number of seizures in resistant forms of partial epilepsy, as well as the activation of microglia and may be effective in neurodegenerative diseases. The last section is devoted to drugs for the treatment of Alzheimer’s disease (AD), namely donepezil, its modifications, and some new compounds potentially capable of inhibiting AD progression through the inhibition of Aβ42 protein synthesis.


2021 ◽  
Vol 14 (3) ◽  
pp. 246
Author(s):  
Valeria Calsolaro ◽  
Grazia Daniela Femminella ◽  
Sara Rogani ◽  
Salvatore Esposito ◽  
Riccardo Franchi ◽  
...  

Dementia affects about 47 million people worldwide, number expected to exponentially increase within 30 years. Alzheimer’s disease (AD) is the most common dementia type, accounting on its own for almost 70% of all dementia cases. Behavioral and psychological symptoms (BPSD) frequently occur during the disease progression; to treat agitation, aggressiveness, delusions and hallucinations, the use of antipsychotic drugs should be limited, due to their safety issues. In this literature review regarding the use of antipsychotics for treating BPSD in dementia, the advantages and limitation of antipsychotic drugs have been evaluated. The available medications for the management of behavioral and psychological symptoms are the antipsychotics, classed into typical and atypical, depending on their action on dopamine and serotonin receptors. First generation, or typical, antipsychotics exhibit lack of tolerability and display a broad range of side effects such as sedation, anticholinergic effects and extrapyramidal symptoms. Atypical, or second generation, antipsychotics bind more selectively to dopamine receptors and simultaneously block serotonin receptors, resulting in higher tolerability. High attention should be paid to the management of therapy interruption or switch between antipsychotics, to limit the possible rebound effect. Several switching strategies may be adopted, and clinicians should “tailor” therapies, accounting for patients’ symptoms, comorbidities, polytherapies and frailty.


2021 ◽  
Author(s):  
Cristina Delgado-Sallent ◽  
Pau Nebot ◽  
Thomas Gener ◽  
Melina Timplalexi ◽  
Amanda B Fath ◽  
...  

ABSTRACTNeural synchrony and functional connectivity are disrupted in neuropsychiatric disorders such as schizophrenia. However, these alterations and how they are affected by commonly prescribed neuropsychiatric medication have not been characterized in depth. Here, we investigated changes in neural dynamics of circuits involving the prefrontal cortex and the hippocampus during psychosis induced by the NMDAR antagonist phencyclidine and subsequent recovery by three different antipsychotic drugs (APDs), the classical APD haloperidol and two atypical APDs, clozapine and risperidone, in freely moving mice. We found that the psychotomimetic effects of phencyclidine were associated with hypersynchronization and disrupted communication of prefrontal-hippocampal pathways. Major alterations occurred in the prefrontal cortex, where phencyclidine increased oscillatory power at delta, high gamma and high frequencies (<100 Hz) and generated aberrant cross-frequency coupling, suggesting the presence of hypersynchronous cortical microcircuits. Cross-regional coupling and phase coherence were also enhanced, further reflecting that the circuit’s functional connectivity was increased. Phencyclidine also redirected the intrinsic flow of information at theta frequencies that traveled from the hippocampus to the prefrontal cortex into delta rhythms that traveled in the opposite direction. The three APDs rescued most phencyclidine-induced changes in power, coupling, phase coherence, and directionality, suggesting common cellular mechanisms of antipsychotic action. However, some differential effects were identified, likely resulting from the distinct affinity the three APDs have for dopamine and serotonin receptors. We therefore investigated how serotonin 1A (5-HT1AR) and 2A receptors (5-HT2AR) compare to the actions of the APDs. 5-HT2AR antagonism by M100907 and 5-HT1AR agonism by 8-OH-DPAT rescued phencyclidine-induced increased power, coupling and phase coherence but were unable to normalize the circuit’s theta directionality. This suggests that other targets of the AAPDs working in tandem with 5-HT1ARs and 5-HT2ARs are required to ameliorate this key feature of the circuit.


2020 ◽  
Vol 13 (11) ◽  
pp. 388
Author(s):  
Irene Fasciani ◽  
Francesco Petragnano ◽  
Gabriella Aloisi ◽  
Francesco Marampon ◽  
Marco Carli ◽  
...  

Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.


Author(s):  
Akash Rathore ◽  
Vivek Asati ◽  
Sushil Kumar Kashaw ◽  
Shivangi Agarwal ◽  
Deepa Parwani ◽  
...  

: Schizophrenia is a chronic neuropsychiatric disorder that affects nearly 1% of the global population. There are various anti-psychotic drugs available for the treatment of schizophrenia, but they have certain side effects, therefore there is a need to explore and develop novel potential lead compounds against schizophrenia. The currently available drugs e.g. typical and atypical antipsychotics act on different dopamine and serotonin receptors and as per literature reports, various piperidine and piperazine derivatives have shown promising activity against these receptors. When different heterocyclic groups are attached to basic piperidine and piperazine rings, the anti-psychotic activity is greatly potentiated. In this direction various antipsychotic drugs have been synthesized at laboratory level and few are under clinical trial studies such as Lu AE58054, PF-04802540, ORG25935, DMXB-A, Bitopertin and ABT-126. In the present review, we include the studies related to the effect of different substituents on piperidine/piperazine derivatives and their anti-psychotic activity. Various series of synthesized compounds by different researchers with piperidine/piperazine nucleus have been reviewed and diagrammatically represented in the form of SAR (structure activity relationships) which will help to the scientists for the development of potential lead compounds.


2020 ◽  
Vol 17 (4) ◽  
pp. 295-303
Author(s):  
Moustapha E. Moustapha ◽  
Mohammed H. Geesi ◽  
Zeinab R. Farag ◽  
El Hassane Anouar

Background: Aripiprazole is a quinolinone derivative. It shows a high affinity for neurotransmitters dopamine and serotonin receptors, which can overcome the blood-brain barrier (BBB) to reach the central nervous system (CNS) to exert therapeutic effects. Its radioiodination may lead to high radiochemical yield and improved its affinity. Aripiprazole radioiodination is an aromatic electrophilic substitution. Objective: Herein, we investigate the favorable atom site of the aromatic electrophilic substitution of aripiprazole by calculating the Fukui indices of heavy atoms and ESP charges of the parent molecule. Methods: The calculations have been carried out at the B3LYP/LanL2DZ level of theory. The iodinated aripiprazole structure is confirmed by comparing the experimental and the predicted 1H NMR chemical shifts of the parent molecule and its iodinated forms. Result: Finally, the electronic properties of aripiprazole and its iodinated form were calculated at the same level of theory. Nucleophilic Fukui indices and ESP charges calculations confirm that C8 is the most favorable site of the electrophilic substitution. The calculated electronic properties (e.g, gap energy, electron affinity, and electronegativity) of aripiprazole and its iodinated form reveal the higher reactivity of iodinated aripiprazole compared with aripiprazole. Conclusion: This may explain the higher affinity of iodinated aripiprazole and the increase of its radiochemical yield.


Sign in / Sign up

Export Citation Format

Share Document