chemical discrimination
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Masaya Fukuda ◽  
Rinako Ujiie ◽  
Takato Inoue ◽  
Qin Chen ◽  
Chengquan Cao ◽  
...  

Abstract Several Asian natricine snakes of the genus Rhabdophis feed on toads and sequester steroidal cardiac toxins known as bufadienolides (BDs) from them. A recent study revealed that species of the R. nuchalis Group ingest lampyrine fireflies to sequester BDs. Although several species of fireflies are distributed in the habitat of the R. nuchalis Group, only lampyrine fireflies, which have BDs, included in the diet of these snakes. Thus, we hypothesized that the R. nuchalis Group chemically distinguishes fireflies that have BDs from those that do not have BDs. We also predicted that the R. nuchalis Group detects BDs as the chemical cue of toxin source. To test these predictions, we conducted three behavioral experiments using R. chiwen, which belongs to the R. nuchalis Group. In the first experiment, R. chiwen showed a moderate tongue flicking response to cinobufagin, a compound of BDs. On the other hand, the snake showed a higher response to the chemical stimuli of lampyrine fireflies (BD fireflies) than those of lucioline fireflies (non-BD fireflies). In the second experiment, in which we provided live BD and non-BD fireflies, the snake voluntarily consumed only the former. In the third, a Y-maze experiment, the snake tended to select the chemical trail of BD fireflies more frequently than that of non-BD fireflies. These results demonstrated that R. chiwen discriminates BD fireflies from non-BD fireflies, but the prediction that BDs are involved in this discrimination was not fully supported. To identify the proximate mechanisms of the recognition of novel toxic prey in the R. nuchalis Group, further investigation is necessary.


2021 ◽  
Author(s):  
Kelly Yinching Lam ◽  
Yinghao Wang ◽  
Tszking Lam ◽  
Chuenfai Ku ◽  
Wingping Yeung ◽  
...  

Abstract BackgroundLeonuri Herba (Yimucao) is a very commonly Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins.MethodsUHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis.ResultsA total of 49 chromatographic peaks of Leonuri Herba were unequivocally or tentatively identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS.ConclusionThis systematic information could ensure Leonuri Herba with well-controlled quality and safe use in clinic. This study could also provide a research model for further study of other Chinese Materia Medica.


2021 ◽  
Author(s):  
Emanuele Catarina da Silva Oliveira ◽  
José Maria Rodrigues da Luz ◽  
Marina Gomes Castro ◽  
Paulo Roberto Filgueiras ◽  
Rogério Carvalho Guarçoni ◽  
...  

Abstract Edaphoclimatic conditions, planting altitudes, soil, the microbiome of plants and fruits, genotypes, and postharvest processing are variables that contribute to the chemical and sensory quality of the coffee. Thus, the objective of this study was to evaluate the impacts of planting altitude and fermentation of fruits on the chemical and sensory quality of the coffee using nuclear magnetic resonance (NMR) and linear discriminant analysis (LDA). Cherry coffees were harvested in 8 points of altitudes between 826 and 1078.08 meters. A completely randomized design with 8 planting altitudes, 5 fermentation processes, and 5 repetitions was performed. Lipids, trigonelline, citrate, and malate were the compounds that most contribute to the chemical discrimination of coffee in the altitudes below 969 m. While, in the high altitudes (> 1000 m), this discrimination was due to the HMF, quinic acid, caffeine, and formic acid and the global notes of coffee drink were higher than 80 points. In fermented coffee, the LDA of the chemical data indicates the formation of five clusters, showing how the compounds can suffer changes depending on the form of processing used in coffee. The best score was observed in samples of 1078.08 m and dry fermentation and only in 969 m was observed significant difference between spontaneous fermentation and induced fermentation. Thus, coffee sensory scores were dependent on planting and fermentation methods and NMR and LDA techniques proved to be important in chemical and sensory discrimination of coffees.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mokhtar Abdulsattar Arif ◽  
Tuğcan Alınç ◽  
Salvatore Guarino ◽  
Stefano Colazza ◽  
Antonino Cusumano ◽  
...  

Egg parasitoids foraging for suitable hosts scattered in the environment rely mainly on chemical cues. Elucidating the chemical ecology of natural enemies is important in the development of effective and successful strategies for conservation biological control. In this context, the host cuticular hydrocarbons, which are exploited by several species of egg parasitoids as contact kairomones, could be used to retain them by providing information about the presence and the sex of adults of the target species: sex is important because only females of the host species lay the eggs that can be subsequently utilized for parasitoid reproduction. However, the chemical basis of host sex discrimination in egg parasitoids is not well understood. We carried out behavioral and chemical bioassays to investigate the role played by contact chemical cues left by adults of the brown marmorated stink bug, Halyomorpha halys Stål, in host egg searching behavior and adult host sex discrimination by the egg parasitoid Trissolcus japonicus (Ashmead). A first set of bioassays showed that parasitoids spent more time exploring patches contaminated with chemicals associated with adult H. halys females compared with adult males. Similar responses were displayed by T. japonicus when hexane extracts of H. halys were tested suggesting that non-polar chemical compounds are involved in host sex discrimination. GC-MS analysis of hexane extracts revealed quantitative differences in the cuticular compounds of the two sexes, with 1-hexadecene (more abundant in males) being the most important component in determining these differences. Hexane extracts of H. halys females blended with synthetic 1-hexadecene significantly reduced the wasps’ arrestment responses compared to crude extracts.


2020 ◽  
Vol 110 (11) ◽  
pp. 1821-1837
Author(s):  
Christelle Lemaitre-Guillier ◽  
Florence Fontaine ◽  
Chloé Roullier-Gall ◽  
Mourad Harir ◽  
Maryline Magnin-Robert ◽  
...  

Botryosphaeria dieback is one of the most significant grapevine trunk diseases that affects the sustainability of the vineyards and provokes economic losses. The causal agents, Botryosphaeriaceae species, live in and colonize the wood of the perennial organs causing wood necrosis. Diseased vines show foliar symptoms, chlorosis, or apoplexy, associated to a characteristic brown stripe under the bark. According to the susceptibility of the cultivars, specific proteins such as PR-proteins and other defense-related proteins are accumulated in the brown stripe compared with the healthy woody tissues. In this study, we enhanced the characterization of the brown stripe and the healthy wood by obtaining a metabolite profiling for the three cultivars Chardonnay, Gewurztraminer, and Mourvèdre to deeper understand the interaction between the Botryosphaeria dieback pathogens and grapevine. The study confirmed a specific pattern according to the cultivar and revealed significant differences between the brown stripe and the healthy wood, especially for phytochemical and lipid compounds. This is the first time that such chemical discrimination was made and that lipids were so remarkably highlighted in the interaction of Botryosphaeriaceae species and grapevine. Their role in the disease development is discussed.


2020 ◽  
Author(s):  
Huahua Sun ◽  
Feng Liu ◽  
Adam Baker ◽  
Laurence J. Zwiebel

AbstractAnopheles mosquitoes are the sole vectors of malaria and other diseases that represent significant threats to global public health. While adult female mosquitoes are responsible for disease transmission, the pre-adult larval stages of the malaria vector Anopheles coluzzii and other mosquitoes rely on a broad spectrum of sensory cues to navigate their aquatic habitats efficiently to avoid predators and search for food. Of these, mosquito larvae rely heavily on volatile chemical signals that directly activate their olfactory apparatus. Because most studies on mosquito olfaction focus on adults, a paucity of attention has been given to the larval olfactory system, in which the peripheral components are associated with the sensory cone of the larval antennae. To address this, we have investigated the electrophysiological response profile of the larval sensory cone in Anopheles mosquitoes. We found that the larval sensory cone is particularly tuned to alcohols, thiazoles and heterocyclics. Furthermore, these responses can be assigned to discrete groups of sensory cone neurons with distinctive, dose-dependent odorant-response profiles that also provide larvae with the ability to discriminate among compounds with similar chemical structures. A correlation analysis was conducted to determine the relationship between specific larval chemosensory receptors and the response profiles of sensory cone neuron groups. These studies reveal that the larval sensory cone is a highly sophisticated organ that is sensitive to a broad range of compounds and is capable of a remarkable degree of chemical discrimination. Taken together, this study presents critical insights into olfactory coding processes in An. coluzzii larvae that further our understanding of larval chemical ecology and will contribute to the development of novel larval-based strategies and tools for mosquito control and the reduction of vector-borne disease transmission.


2020 ◽  
Author(s):  
Hortense de la Codre ◽  
Marie Radepont ◽  
Jean‐Philippe Echard ◽  
Oulfa Belhadj ◽  
Stéphane Vaiedelich ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4064
Author(s):  
Yumei Wang ◽  
Lei Liu ◽  
Yukun Ma ◽  
Lina Guo ◽  
Yu Sun ◽  
...  

Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.


Sign in / Sign up

Export Citation Format

Share Document