scholarly journals Cultivar- and Wood Area-Dependent Metabolomic Fingerprints of Grapevine Infected by Botryosphaeria Dieback

2020 ◽  
Vol 110 (11) ◽  
pp. 1821-1837
Author(s):  
Christelle Lemaitre-Guillier ◽  
Florence Fontaine ◽  
Chloé Roullier-Gall ◽  
Mourad Harir ◽  
Maryline Magnin-Robert ◽  
...  

Botryosphaeria dieback is one of the most significant grapevine trunk diseases that affects the sustainability of the vineyards and provokes economic losses. The causal agents, Botryosphaeriaceae species, live in and colonize the wood of the perennial organs causing wood necrosis. Diseased vines show foliar symptoms, chlorosis, or apoplexy, associated to a characteristic brown stripe under the bark. According to the susceptibility of the cultivars, specific proteins such as PR-proteins and other defense-related proteins are accumulated in the brown stripe compared with the healthy woody tissues. In this study, we enhanced the characterization of the brown stripe and the healthy wood by obtaining a metabolite profiling for the three cultivars Chardonnay, Gewurztraminer, and Mourvèdre to deeper understand the interaction between the Botryosphaeria dieback pathogens and grapevine. The study confirmed a specific pattern according to the cultivar and revealed significant differences between the brown stripe and the healthy wood, especially for phytochemical and lipid compounds. This is the first time that such chemical discrimination was made and that lipids were so remarkably highlighted in the interaction of Botryosphaeriaceae species and grapevine. Their role in the disease development is discussed.

2014 ◽  
Vol 104 (10) ◽  
pp. 1021-1035 ◽  
Author(s):  
Alessandro Spagnolo ◽  
Maryline Magnin-Robert ◽  
Tchilabalo Dilezitoko Alayi ◽  
Clara Cilindre ◽  
Christine Schaeffer-Reiss ◽  
...  

Botryosphaeria dieback is a fungal grapevine trunk disease that represents a threat for viticulture worldwide due to the decreased production of affected plants and their premature death. This dieback is characterized by a typical wood discoloration called brown stripe. Herein, a proteome comparison of the brown striped wood from Botryosphaeria dieback-affected standing vines cultivars Chardonnay, Gewurztraminer, and Mourvèdre was performed. The transcript analysis for 15 targeted genes and the quantification of both total phenolics and specific stilbenes were also performed. Several pathogenesis-related proteins and members of the antioxidant system were more abundant in the brown striped wood of the three cultivars, whereas other defense-related proteins were less abundant. Additionally, total phenolics and some specific stilbenes were more accumulated in the brown striped wood. Strongest differences among the cultivars concerned proteins of the primary metabolism, which looked to be particularly impaired in the brown striped wood of ‘Chardonnay’. Low abundance of some proteins involved in defense response probably contributes to make global response insufficient to avoid the symptom development. The differential susceptibility of the three grapevine cultivars could be linked to the diverse expression of various proteins involved in defense response, stress tolerance, and metabolism.


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1189-1217 ◽  
Author(s):  
Vincenzo Mondello ◽  
Aurélie Songy ◽  
Enrico Battiston ◽  
Catia Pinto ◽  
Cindy Coppin ◽  
...  

Grapevine trunk diseases (GTDs) represent one of the most important problems for viticulture worldwide. Beyond the original causes of this outbreak in some countries like France, the lack of efficient control protocols and the prohibition of using active ingredients such as sodium arsenite and benzimidazoles, until recently used to reduce the impact of some GTDs but deleterious for humans and the environment, have probably worsened the impact of the diseases, leading to increasing economic losses. Since 1990, searches have been made to find efficient tools to control GTDs, testing a wide range of active ingredients and biocontrol agents. This review provides readers with an overview of the results reported in the scientific literature over the last 15 years. In particular, the review focuses on the trials carried out applying chemicals or microorganisms to control Esca complex diseases, Botryosphaeria dieback, and Eutypa dieback, the most widespread GTDs.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1427
Author(s):  
Pedro Reis ◽  
Ana Gaspar ◽  
Artur Alves ◽  
Florence Fontaine ◽  
Inês Lourenço ◽  
...  

Botryosphaeria dieback caused by several Botryosphaeriaceae species is one of the most important grapevine trunk diseases affecting vineyards worldwide. These fungi cause wedge-shaped perennial cankers and black streaking of the wood and have also been associated with intervein leaf chlorosis, dried or mummified berries, and eventually, the death of the plant. Early season symptoms may sometimes be disregarded by growers, being mistaken with symptoms from other diseases such as downy mildew or botrytis rot. Currently, few studies are available to determine what species may be causing these early season symptoms in grapevines. During the 2018 season, during the flowering period, grapevine samples showing necrosis on green shoots, dried inflorescences, and flowers, were collected in vineyards throughout the central regions of Portugal. Isolations were performed from symptomatic organs, and twenty-three isolates of Botryosphaeriaceae were selected. An analysis of the ITS and part of the translation elongation factor 1-α sequences was performed, revealing that the two main species apparently responsible for these symptoms were Diplodia seriata and Neofusicoccum parvum. In pathogenicity tests conducted on 1-year-old plants grown under controlled conditions in a greenhouse and on field-grown clusters, symptoms were reproduced, confirming the pathogenic behavior of the selection of isolates.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 802
Author(s):  
Pierluigi Reveglia ◽  
Regina Billones-Baaijens ◽  
Jennifer Millera Millera Niem ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
...  

Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Catarina Leal ◽  
Nicolas Richet ◽  
Jean-François Guise ◽  
David Gramaje ◽  
Josep Armengol ◽  
...  

Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective chemicals, biocontrol strategies are developed as alternatives to better cope with environmental concerns. A combination of biological control agents (BCAs) could even improve sustainable disease management through complementary ways of protection. In this study, we evaluated the combination of Bacillus subtilis (Bs) PTA-271 and Trichoderma atroviride (Ta) SC1 for the protection of Chardonnay and Tempranillo rootlings against Neofusicoccum parvum Bt67, an aggressive pathogen associated to Botryosphaeria dieback (BD). Indirect benefits offered by each BCA and their combination were then characterized in planta, as well as their direct benefits in vitro. Results provide evidence that (1) the cultivar contributes to the beneficial effects of Bs PTA-271 and Ta SC1 against N. parvum, and that (2) the in vitro BCA mutual antagonism switches to the strongest fungistatic effect toward Np-Bt67 in a three-way confrontation test. We also report for the first time the beneficial potential of a combination of BCA against Np-Bt67 especially in Tempranillo. Our findings highlight a common feature for both cultivars: salicylic acid (SA)-dependent defenses were strongly decreased in plants protected by the BCA, in contrast with symptomatic ones. We thus suggest that (1) the high basal expression of SA-dependent defenses in Tempranillo explains its highest susceptibility to N. parvum, and that (2) the cultivar-specific responses to the beneficial Bs PTA-271 and Ta SC1 remain to be further investigated.


2000 ◽  
Vol 150 (3) ◽  
pp. 433-446 ◽  
Author(s):  
Miroslav Dundr ◽  
Tom Misteli ◽  
Mark O.J. Olson

Mammalian cell nucleoli disassemble at the onset of M-phase and reassemble during telophase. Recent studies showed that partially processed preribosomal RNA (pre-rRNA) is preserved in association with processing components in the perichromosomal regions (PRs) and in particles called nucleolus-derived foci (NDF) during mitosis. Here, the dynamics of nucleolar reassembly were examined for the first time in living cells expressing fusions of the processing-related proteins fibrillarin, nucleolin, or B23 with green fluorescent protein (GFP). During telophase the NDF disappeared with a concomitant appearance of material in the reforming nuclei. Prenucleolar bodies (PNBs) appeared in nuclei in early telophase and gradually disappeared as nucleoli formed, strongly suggesting the transfer of PNB components to newly forming nucleoli. Fluorescence recovery after photobleaching (FRAP) showed that fibrillarin-GFP reassociates with the NDF and PNBs at rapid and similar rates. The reentry of processing complexes into telophase nuclei is suggested by the presence of pre-rRNA sequences in PNBs. Entry of specific proteins into the nucleolus approximately correlated with the timing of processing events. The mitotically preserved processing complexes may be essential for regulating the distribution of components to reassembling daughter cell nucleoli.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xiaoting Zhu ◽  
Amy S. Shah ◽  
Debi K. Swertfeger ◽  
Hailong Li ◽  
Sheng Ren ◽  
...  

Lower plasma levels of high-density lipoproteins (HDL) in adolescents with type 2 diabetes (T2D) have been associated with a higher pulse wave velocity (PWV), a marker of arterial stiffness. Evidence suggests that HDL proteins or particle subspecies are altered in T2D and these may drive these relationships. In this work, we set out to reveal any specific proteins and subspecies that are related to arterial stiffness in youth with T2D from proteomics data. Plasma and PWV measurements were previously acquired from lean and T2D adolescents. Each plasma sample was separated into 18 fractions and evaluated by mass spectrometry. Then, we applied a validated network-based computational approach to reveal HDL subspecies associated with PWV. Among 68 detected phospholipid-associated proteins, we found that seven were negatively correlated with PWV, indicating that they may be atheroprotective. Conversely, nine proteins show positive correlation with PWV, suggesting that they may be related to arterial stiffness. Intriguingly, our results demonstrate that apoA-I and histidine-rich glycoprotein may reverse their protective roles and become antagonistic in the setting of T2D. Furthermore, we revealed two arterial stiffness-associated HDL subspecies, each of which contains multiple PWV-related proteins. Correlation and disease association analyses suggest that these HDL subspecies might link T2D to its cardiovascular-related complications.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Alexander Lazarev ◽  
Valery Terletskiy ◽  
Vladimir Chebotar

In the genus Xanthomonas, specialists consider a significant number of species and varieties (pathovars) of phytopathogenic bacteria that infect many agricultural and ornamental plants (about 400 species), which leads to serious economic losses. For the timely detection of these pathogens, accurate diagnosis is necessary, allowing correct and prompt identification. Molecular genetic methods are able to identify populations of Xanthomonas strains with a fairly complete characterization of their hereditary material. The proposed method of genotyping — double digest and selective label (DDSL) — is based on the use of two restriction endonucleases for the separation of bacterial genomic DNA. The DNA polymerase (Taq) present in the reaction mixture along with biotinylated deoxycytosine triphosphate (Bio–dCTP) allows for the visualization of DNA fragments. The tag only labels DNA fragments that have 3'-recessed ends formed by the first enzyme (BcuI). The second restriction endonuclease (Eco147I) produces blunt ends that are unable to incorporate the label. As a result, in the DDSL reaction, 20–50 clearly distinguishable DNA fragments are visualized on the filter. The number and distribution of fragments are characteristic for each bacterial strain of the genus Xanthomonas. Genotyping these microorganisms makes it possible to identify the specific profile of each strain, i.e., assign it a sort of “bar code” for individual specification. The strains of bacteria of the genus Xanthomonas, obtained from different species (tomato, radish, sorghum) are genetically separated from each other, showing a specific pattern in terms of the distribution of DNA fragments, despite the common geographical origin. A comparatively rare case of the identity of strains, despite their geographical and temporal unrelatedness and different cultures, has been recorded.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Anzhalika Sidarovich ◽  
Cindy L Will ◽  
Maria M Anokhina ◽  
Javier Ceballos ◽  
Sonja Sievers ◽  
...  

Small molecule inhibitors of pre-mRNA splicing are important tools for identifying new spliceosome assembly intermediates, allowing a finer dissection of spliceosome dynamics and function. Here, we identified a small molecule that inhibits human pre-mRNA splicing at an intermediate stage during conversion of pre-catalytic spliceosomal B complexes into activated Bact complexes. Characterization of the stalled complexes (designated B028) revealed that U4/U6 snRNP proteins are released during activation before the U6 Lsm and B-specific proteins, and before recruitment and/or stable incorporation of Prp19/CDC5L complex and other Bact complex proteins. The U2/U6 RNA network in B028 complexes differs from that of the Bact complex, consistent with the idea that the catalytic RNA core forms stepwise during the B to Bact transition and is likely stabilized by the Prp19/CDC5L complex and related proteins. Taken together, our data provide new insights into the RNP rearrangements and extensive exchange of proteins that occurs during spliceosome activation.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 99 ◽  
Author(s):  
Laura Buzón-Durán ◽  
Jesús Martín-Gil ◽  
Eduardo Pérez-Lebeña ◽  
David Ruano-Rosa ◽  
José L. Revuelta ◽  
...  

Grapevine trunk diseases (GTDs) are a major threat to the wine and grape industry. The aim of the study was to investigate the antifungal activity against Neofusicoccum parvum, Diplodia seriata, and Botryosphaeria dothidea of ε-polylysine, chitosan oligomers, their conjugates, Streptomyces rochei and S. lavendofoliae culture filtrates, and their binary mixtures with chitosan oligomers. In vitro mycelial growth inhibition tests suggest that the efficacy of these treatments, in particular those based on ε-polylysine and ε-polylysine:chitosan oligomers 1:1 w/w conjugate, against the three Botryosphaeriaceae species would be comparable to or higher than that of conventional synthetic fungicides. In the case of ε-polylysine, EC90 values as low as 227, 26.9, and 22.5 µg·mL−1 were obtained for N. parvum, D. seriata, and B. dothidea, respectively. Although the efficacy of the conjugate was slightly lower, with EC90 values of 507.5, 580.2, and 497.4 µg·mL−1, respectively, it may represent a more cost-effective option to the utilization of pure ε-polylysine. The proposed treatments may offer a viable and sustainable alternative for controlling GTDs.


Sign in / Sign up

Export Citation Format

Share Document