scholarly journals Investigation of the Strength of Plastic Parts Improved with Selective Induction Heating

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4293
Author(s):  
Przemysław Poszwa ◽  
Paweł Muszyński ◽  
Krzysztof Mrozek ◽  
Michał Zielinski ◽  
Andrzej Gessner ◽  
...  

The use of selective induction heating of molding surfaces allows for better filling of molding cavities and has a positive effect on the properties of molded products. This is particularly important in the production of parts that include flexible hinges, which are thin plastic layers connecting two or more parts of the product. By using hinges, it is possible to expand the use of injection molding products and their capabilities. They are widely used in the production of parts for the electrical engineering industry and for packaging Fast Moving Consumer Goods (FMCG). The use of hinges also entails specific reductions in wall thickness. Increases in the shear rate can be expected, which can lead to the degradation of polymers and deterioration of mechanical properties of materials. This paper investigates injection molded flexible hinge parts manufactured with selective induction heating to improve their properties. To verify the efficiency of reduction of material degradation due to high shear rates, open/close tests of elastic hinges were performed. The linear relation between the number of cycles the hinges can withstand, mold temperature and injection time was identified, where mold temperature was the more significant factor.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2543
Author(s):  
Paweł Muszyński ◽  
Przemysław Poszwa ◽  
Andrzej Gessner ◽  
Krzysztof Mrozek

Injection molding is a polymer processing technology used for manufacturing parts with elastic hinges. Elastic hinges are widely used in FMCG (Fast Moving Consumer Goods) packaging (e.g., bottle closures of shampoos, sauces) and in the electrical engineering industry. Elastic hinge is a thin film that connect two regions of the injection molded part, where significant shear rates are present, which can lead to the degradation of polymers and the decrease in mechanical properties. Selective induction heating is the method that improves the flow of the polymer melt through thin regions by the local increase in mold temperature. In this study, selective induction heating was used to improve mechanical properties of elastic hinges by the reduction of material degradation due to high shear rates. To verify the change of shear rates, selective induction heating simulation and injection molding simulations were performed. The linear relation between mold temperature and maximum shear rate in the cross-section was identified and the mechanical tests showed significant differences in hinge stiffness, tensile strength and elongation at break.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2771
Author(s):  
Antoine Dupuis ◽  
Jean-Jacques Pesce ◽  
Paulo Ferreira ◽  
Gilles Régnier

This paper characterizes and analyzes the microstructures of injection-molded polypropylene parts reinforced with 20 wt% of hemp fibers in order to understand the process induced variations in thermomechanical properties. In-thickness fiber orientation and fiber content were determined by X-ray tomography along the flow. The fiber content along the flow path was also determined by direct fiber content measurements after matrix dissolution, showing an increase of 2%/100 mm for a 2.2 mm-thick plate due to fiber migration during the filling stage. A typical shell/core structure for fiber orientation in injection molding was observed, but with a very clear transition between the layer solidified under high shear rates and the core in which the fiber content was reduced by more than 50%. The orientation of hemp fibers is lower than the one of glass fibers, especially in thickness direction. However, the overall fiber orientation in the injection direction induces significant anisotropic thermomechanical properties, which cannot be explained by simple micromechanical models that consider isotropic mechanical properties for hemp fibers. These phenomena must be taken into account in process simulation codes for injection molding to better predict thermomechanical properties as well as part shrinkage and warpage to design molds.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1997 ◽  
Vol 17 (5) ◽  
pp. 919-924 ◽  
Author(s):  
Patrick André ◽  
Patricia Hainaud ◽  
Claire Bal dit Sollier ◽  
Leonard I. Garfinkel ◽  
Jacques P. Caen ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 187-190
Author(s):  
Jong Sun Kim ◽  
Chul Jin Hwang ◽  
Kyung Hwan Yoon

Recently, injection molded plastic optical products are widely used in many fields, because injection molding process has advantages of low cost and high productivity. However, there remains residual birefringence and residual stresses originated from flow history and differential cooling. The present study focused on developing a technique to measure the birefringence in transparent injection-molded optical plastic parts using two methods as follows: (i) the two colored laser method, (ii) the R-G-B separation method of white light. The main idea of both methods came from the fact that more information can be obtained from the distribution of retardation caused by different wavelengths. The comparison between two methods is demonstrated for the same sample of which retardation is up to 850 nm.


Open Ceramics ◽  
2021 ◽  
Vol 5 ◽  
pp. 100052
Author(s):  
V. Carnicer ◽  
C. Alcázar ◽  
M.J. Orts ◽  
E. Sánchez ◽  
R. Moreno

2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


1991 ◽  
Vol 35 (4) ◽  
pp. 706-706
Author(s):  
Hideroh Takahashi ◽  
Yoshinori Inoue ◽  
Satoru Yamamoto ◽  
Osami Kamigaito

2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Sign in / Sign up

Export Citation Format

Share Document