spinal fmri
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Merve Kaptan ◽  
S. Johanna Vannesjo ◽  
Toralf Mildner ◽  
Ulrike Horn ◽  
Ronald Hartley-Davies ◽  
...  

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, one of which is signal loss due to local magnetic field inhomogeneities. This issue can be addressed with slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities using a single, slice-specific gradient pulse. Since the original demonstration of its utility, this technique has already been employed in several spinal fMRI studies. Here, we aim to address two outstanding issues regarding this technique: on the one hand, we evaluate its effects on several parameters that are directly relevant for spinal fMRI (but have not yet been assessed) and on the other hand, we improve upon the manual selection of slice-specific z-shims by developing automated procedures. First, we demonstrate that the beneficial effects of z-shimming i) are apparent across a large range of echo times, ii) hold true for both the dorsal and ventral horn gray matter, and iii) are also clearly apparent in the temporal signal-to-noise ratio (tSNR) of gradient-echo EPI time-series data. Second, and more importantly, we address the time-consuming and subjective nature of manual selection of slice-specific z-shims by developing two automated approaches: one is based on finding the z-shim that maximizes spinal cord signal intensity in each slice of an EPI z-shim reference-scan and the other is based on finding the strength of the gradient-field that compensates the through-slice inhomogeneity in field map data. Both automated approaches i) were much faster than the manual approach, ii) lead to significant improvements in spinal cord gray matter tSNR compared to no z-shimming and iii) resulted in beneficial effects that were stable across time. While the field map-based approach performed slightly worse than the manual approach, the EPI-based approach performed at least as well as the manual one and was furthermore validated on an independently acquired corticospinal data-set (N > 100). Together, we believe that automated z-shimming will improve the data quality of future spinal fMRI studies and — by removing the subjective step of manual z-shim selection — may also lead to increased reproducibility in longitudinal studies.


2021 ◽  
Author(s):  
Eiji Takasawa ◽  
Mitsunari Abe ◽  
Kenji Takagishi ◽  
Hirotaka Chikuda ◽  
Takashi Hanakawa

Abstract Evolution of the direct connection from primary motor cortex to motoneurons in the spinal cord parallels acquisition of hand dexterity and lateralization of hand preference. Recent studies indicated that the phylogenetically older pathway consisting of multi-synaptic connections from primary motor cortex to spinal motoneurons also participate in controlling dexterous hand movement. However, it remains unknown how the two corticospinal pathways work in concert to control unilateral hand movement with lateralized preference. Using corticospinal functional magnetic resonance imaging, we discovered the asymmetric organization of the two corticospinal networks that modelled monosynaptic or polysynaptic control from primary motor cortices over spinal motoneurons. Moreover, the degree of the involvement of the two corticospinal networks paralleled the lateralization of hand preference. The present results pointed to the functionally lateralized motor nervous system that underlies the behavioural asymmetry of handedness, a uniquely human trait which could have phylogenetically differentiated humans from other primates.


2018 ◽  
Vol 8 (9) ◽  
pp. 173 ◽  
Author(s):  
Jocelyn Powers ◽  
Gabriela Ioachim ◽  
Patrick Stroman

A comprehensive review of the literature-to-date on functional magnetic resonance imaging (fMRI) of the spinal cord is presented. Spinal fMRI has been shown, over more than two decades of work, to be a reliable tool for detecting neural activity. We discuss 10 key points regarding the history, development, methods, and applications of spinal fMRI. Animal models have served a key purpose for the development of spinal fMRI protocols and for experimental spinal cord injury studies. Applications of spinal fMRI span from animal models across healthy and patient populations in humans using both task-based and resting-state paradigms. The literature also demonstrates clear trends in study design and acquisition methods, as the majority of studies follow a task-based, block design paradigm, and utilize variations of single-shot fast spin-echo imaging methods. We, therefore, discuss the similarities and differences of these to resting-state fMRI and gradient-echo EPI protocols. Although it is newly emerging, complex connectivity and network analysis is not only possible, but has also been shown to be reliable and reproducible in the spinal cord for both task-based and resting-state studies. Despite the technical challenges associated with spinal fMRI, this review identifies reliable solutions that have been developed to overcome these challenges.


2018 ◽  
Vol 8 (9) ◽  
pp. 165 ◽  
Author(s):  
Stephen Smith ◽  
Tiffany Kolesar ◽  
Jennifer Kornelsen

Previous research has delineated the networks of brain structures involved in the perception of emotional auditory stimuli. These include the amygdala, insula, and auditory cortices, as well as frontal-lobe, basal ganglia, and cerebellar structures involved in the planning and execution of motoric behaviors. The aim of the current research was to examine whether emotional sounds also influence activity in the brainstem and cervical spinal cord. Seventeen undergraduate participants completed a spinal functional magnetic resonance imaging (fMRI) study consisting of two fMRI runs. One run consisted of three one-minute blocks of aversive sounds taken from the International Affective Digitized Sounds (IADS) stimulus set; these blocks were interleaved by 40-s rest periods. The other block consisted of emotionally neutral stimuli also drawn from the IADS. The results indicated a stark pattern of lateralization. Aversive sounds elicited greater activity than neutral sounds in the right midbrain and brainstem, and in right dorsal and ventral regions of the cervical spinal cord. Neutral stimuli, on the other hand, elicited less neural activity than aversive sounds overall; these responses were left lateralized and were found in the medial midbrain and the dorsal sensory regions of the cervical spinal cord. Together, these results demonstrate that aversive auditory stimuli elicit increased sensorimotor responses in brainstem and cervical spinal cord structures.


2018 ◽  
Vol 8 (8) ◽  
pp. 156 ◽  
Author(s):  
Alyssia Wilson ◽  
Tiffany Kolesar ◽  
Jennifer Kornelsen ◽  
Stephen Smith

Emotional stimuli modulate activity in brain areas related to attention, perception, and movement. Similar increases in neural activity have been detected in the spinal cord, suggesting that this understudied component of the central nervous system is an important part of our emotional responses. To date, previous studies of emotion-dependent spinal cord activity have utilized long presentations of complex emotional scenes. The current study differs from this research by (1) examining whether emotional faces will lead to enhanced spinal cord activity and (2) testing whether these stimuli require conscious perception to influence neural responses. Fifteen healthy undergraduate participants completed six spinal functional magnetic resonance imaging (fMRI) runs in which three one-minute blocks of fearful, angry, or neutral faces were interleaved with 40-s rest periods. In half of the runs, the faces were clearly visible while in the other half, the faces were displayed for only 17 ms. Spinal fMRI consisted of half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences targeting the cervical spinal cord. The results indicated that consciously perceived faces expressing anger elicited significantly more activity than fearful or neutral faces in ventral (motoric) regions of the cervical spinal cord. When stimuli were presented below the threshold of conscious awareness, neutral faces elicited significantly more activity than angry or fearful faces. Together, these data suggest that the emotional modulation of spinal cord activity is most impactful when the stimuli are consciously perceived and imply a potential threat toward the observer.


2015 ◽  
Vol 8s1 ◽  
pp. MRI.S23556 ◽  
Author(s):  
Tiffany A. Kolesar ◽  
Kirsten M. Fiest ◽  
Stephen D. Smith ◽  
Jennifer Kornelsen

Objective To assess the use of fMRI of the spinal cord in measuring noxious stimulation. Methods The Scopus, Medline, EMBASE, and Web of Science databases were searched, along with the reference lists of included articles. Two independent reviewers screened abstracts, full-text articles, and extracted data. Original research was included if fMRI of the human spinal cord was used to measure responses to noxious stimulation. Results Of the 192 abstracts screened, 19 met the search criteria and were divided according to their focus: investigating pain responses ( n = 6), methodology ( n = 6), spinal cord injury ( n = 2), or cognition–pain interactions ( n = 5). All but one study appear to have observed activity in ipsilateral and dorsal gray matter regions in response to noxious stimuli, although contralateral or ventral activity was also widely observed. Conclusions Although nociception can be investigated using spinal fMRI, establishing reliability, standardizing methodology, and reporting of results will greatly advance this field.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112325 ◽  
Author(s):  
Torge Rempe ◽  
Stephan Wolff ◽  
Christian Riedel ◽  
Ralf Baron ◽  
Patrick W. Stroman ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Keyvan Kashkouli Nejad ◽  
Motoaki Sugiura ◽  
Benjamin Thyreau ◽  
Takayuki Nozawa ◽  
Yuka Kotozaki ◽  
...  

Many disciplines/traditions that promote interoceptive (inner sensation of body parts) attention/awareness (IAA) train practitioners to both attend to and be aware of interoceptive sensory experiences in body parts. The effect of such practices has been investigated in previous imaging studies but limited to cerebral neural activity. Here, for the first time, we studied the impact of these practices on the spinal neural activity of experts and novices. We also attempted to clarify the effect of constant and deep breathing, a paradigm utilized in concentration practices to avoid mind wandering, on IAA-related spinal neural activity. Subjects performed IAA tasks with and without a deep and constant breathing pattern in two sessions. Results showed that neural activity in the spinal segment innervating the attended-to body area increased in experts (P=0.04) when they performed IAA and that this increase was significantly larger for experts versus novices in each of the sessions (P=0.024). The significant effects of IAA and expertise on spinal neural activity are consistent with and elaborate on previous reports showing similar effects on cerebral neural activity. As the spinal cord directly innervates body parts, the results might indicate that IAA has an instantaneous (possibly beneficial) effect on the physical body after extended training.


2012 ◽  
Vol 38 (5) ◽  
pp. 418-435 ◽  
Author(s):  
Natalie Kozyrev ◽  
Chase R. Figley ◽  
Marcalee S. Alexander ◽  
J. Scott Richards ◽  
Rachael L. Bosma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document