scholarly journals Hill Climb Game Play with Webcam Using OpenCV

Author(s):  
Chandan Kumar

Abstract: Computer vision is a process by which we can understand how the images and videos are stored and manipulated, also it helps in the process of retrieving data from either images or videos. Computer Vision is part of Artificial Intelligence. Computer-Vision plays a major role in Autonomous cars, Object detections, robotics, object tracking, etc. OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in the commercial products. It comes with a highly improved deep learning (dnn ) module. This module now supports a number of deep learning frameworks, including Caffe, TensorFlow, and Torch/PyTorch. This does allow us to take our models trained using dedicated deep learning libraries/tools and then efficiently use them directly inside our OpenCV scripts. MediaPipe is a framework mainly used for building audio, video, or any time series data. With the help of the MediaPipe framework, we can build very impressive pipelines for different media processing functions like Multi-hand Tracking, Face Detection, Object Detection and Tracking, etc.

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2022 ◽  
Author(s):  
J.M. González-Sopeña

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.


2020 ◽  
Author(s):  
Charles Murphy ◽  
Edward Laurence ◽  
Antoine Allard

Abstract Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically and/or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where the effective local mechanisms governing a dynamic are learned automatically from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using stochastic contagion dynamics of increasing complexity on static and temporal networks. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 28 ◽  
Author(s):  
Kasthurirangan Gopalakrishnan

Deep learning, more specifically deep convolutional neural networks, is fast becoming a popular choice for computer vision-based automated pavement distress detection. While pavement image analysis has been extensively researched over the past three decades or so, recent ground-breaking achievements of deep learning algorithms in the areas of machine translation, speech recognition, and computer vision has sparked interest in the application of deep learning to automated detection of distresses in pavement images. This paper provides a narrative review of recently published studies in this field, highlighting the current achievements and challenges. A comparison of the deep learning software frameworks, network architecture, hyper-parameters employed by each study, and crack detection performance is provided, which is expected to provide a good foundation for driving further research on this important topic in the context of smart pavement or asset management systems. The review concludes with potential avenues for future research; especially in the application of deep learning to not only detect, but also characterize the type, extent, and severity of distresses from 2D and 3D pavement images.


Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Jinghan Du ◽  
Haiyan Chen ◽  
Weining Zhang

Purpose In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its related applications. However, affected by hardware device itself, sensor nodes often fail to work, resulting in a common phenomenon that the collected data are incomplete. The purpose of this study is to predict and recover the missing data in sensor networks. Design/methodology/approach Considering the spatio-temporal correlation of large-scale sensor data, this paper proposes a data recover model in sensor networks based on a deep learning method, i.e. deep belief network (DBN). Specifically, when one sensor fails, the historical time-series data of its own and the real-time data from surrounding sensor nodes, which have high similarity with a failure observed using the proposed similarity filter, are collected first. Then, the high-level feature representation of these spatio-temporal correlation data is extracted by DBN. Moreover, to determine the structure of a DBN model, a reconstruction error-based algorithm is proposed. Finally, the missing data are predicted based on these features by a single-layer neural network. Findings This paper collects a noise data set from an airport monitoring system for experiments. Various comparative experiments show that the proposed algorithms are effective. The proposed data recovery model is compared with several other classical models, and the experimental results prove that the deep learning-based model can not only get a better prediction accuracy but also get a better performance in training time and model robustness. Originality/value A deep learning method is investigated in data recovery task, and it proved to be effective compared with other previous methods. This might provide a practical experience in the application of a deep learning method.


Over the recent years, the term deep learning has been considered as one of the primary choice for handling huge amount of data. Having deeper hidden layers, it surpasses classical methods for detection of outlier in wireless sensor network. The Convolutional Neural Network (CNN) is a biologically inspired computational model which is one of the most popular deep learning approaches. It comprises neurons that self-optimize through learning. EEG generally known as Electroencephalography is a tool used for investigation of brain function and EEG signal gives time-series data as output. In this paper, we propose a state-of-the-art technique designed by processing the time-series data generated by the sensor nodes stored in a large dataset into discrete one-second frames and these frames are projected onto a 2D map images. A convolutional neural network (CNN) is then trained to classify these frames. The result improves detection accuracy and encouraging.


Sign in / Sign up

Export Citation Format

Share Document