wound epidermis
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Can Aztekin

Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.



Development ◽  
2021 ◽  
Author(s):  
Tetsuya Bando ◽  
Misa Okumura ◽  
Yuki Bando ◽  
Marou Hagiwara ◽  
Yoshimasa Hamada ◽  
...  

Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues in contrast to the limited regenerative abilities in human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA-seq during leg regeneration. Among 11 Toll genes in the Gryllus genome, expression of Gb'Toll2-1, Gb'Toll2-2, and Gb'Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Gb'Toll, Gb'Toll2-1, Gb'Toll2-2, Gb'Toll2-3, or Gb'Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Gb'Toll2-2 decreased the ratios of S and M phase cells, expression of JAK/STAT signalling genes, and accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, along with reduced proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.



Development ◽  
2021 ◽  
Author(s):  
Can Aztekin ◽  
Tom W. Hiscock ◽  
John Gurdon ◽  
Jerome Jullien ◽  
John Marioni ◽  
...  

Absence of a specialized wound epidermis is hypothesized to block limb regeneration in higher vertebrates. However, the factors preventing its formation in regeneration-incompetent animals are poorly understood. To characterize the endogenous molecular and cellular regulators of specialized wound epidermis formation in Xenopus laevis tadpoles, and the loss of their regeneration-competency during development, we used single-cell transcriptomics and ex vivo regenerating limb cultures. Transcriptomic analysis revealed that the specialized wound epidermis is not a novel cell state, but a re-deployment of the apical-ectodermal-ridge (AER) program underlying limb development. Enrichment of secreted inhibitory factors, including Noggin, a morphogen expressed in developing cartilage/bone progenitor cells, are identified as key inhibitors of AER cell formation in regeneration-incompetent tadpoles. These factors can be overridden by Fgf10, which operates upstream of Noggin and blocks chondrogenesis. These results indicate that manipulation of the extracellular environment and/or chondrogenesis may provide a strategy to restore regeneration potential in higher vertebrates.



2020 ◽  
Author(s):  
C. Aztekin ◽  
T. W. Hiscock ◽  
J. B. Gurdon ◽  
J. Jullien ◽  
J. C. Marioni ◽  
...  

AbstractAbsence of a specialised wound epidermis is hypothesised to block limb regeneration in higher vertebrates. To elucidate the cellular and molecular determinants of this tissue, we performed single-cell transcriptomics in regeneration-competent, -restricted, and -incompetent Xenopus tadpoles. We identified apical-ectodermal-ridge (AER) cells as the specialised wound epidermis, and found that their abundance on the amputation plane correlates with regeneration potential and injury-induced mesenchymal plasticity. By using ex vivo regenerating limb cultures, we demonstrate that extrinsic cues produced during limb development block AER cell formation. We identify Noggin, a morphogen expressed in cartilage/bone progenitor cells, as one of the key inhibitors of AER cell formation in regeneration-incompetent tadpoles. Extrinsic inhibitory cues can be overridden by Fgf10, which operates upstream of Noggin and blocks chondrogenesis. Together, these results indicate that manipulation of the extracellular environment and/or chondrogenesis may provide a strategy to restore regeneration potential in higher vertebrates.One Sentence SummaryExtrinsic cues associated with chondrogenic progression inhibit AER cell formation and restrict limb regeneration potential.



Fishes ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 6 ◽  
Author(s):  
Parameswaran Vijayakumar ◽  
M. Leonor Cancela ◽  
Vincent Laizé

The caudal fin of teleost fish has become an excellent system for investigating the mechanisms of epimorphic regeneration. Upon amputation of the caudal fin, a mass of undifferentiated cells, called blastema, proliferate beneath the wound-epidermis and differentiate into various cell types to faithfully restore the missing fin structures. Here we describe a protocol that can be used to isolate and culture blastema cells from zebrafish. Primary cultures were initiated from 36 h post-amputation (hpa) blastema and optimal cell growth was achieved using L-15 medium supplemented with 5% fetal bovine serum in plates either coated with fibronectin or uncoated. After seeding, zebrafish blastema cells formed a uniform culture and exhibited polygonal shapes with prominent nucleus, while various cell types were also observed after few days in culture indicating cell differentiation. Upon treatment with all-trans retinoic acid, zebrafish blastema cells differentiated into neuron-like and oligodendritic-like cells. Immunocytochemistry data also revealed the presence of mesenchymal and neuronal cells. The availability of blastema cell cultures could contribute to a better understanding of epimorphic regeneration by providing a mean to investigate the mechanisms underlying blastema cell differentiation. Furthermore, this protocol is simple, rapid, and cost-efficient, and can be virtually applied to the development of any fish blastema cell culture.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Stephanie L Tsai ◽  
Clara Baselga-Garriga ◽  
Douglas A Melton

Formation of a specialized wound epidermis is required to initiate salamander limb regeneration. Yet little is known about the roles of the early wound epidermis during the initiation of regeneration and the mechanisms governing its development into the apical epithelial cap (AEC), a signaling structure necessary for outgrowth and patterning of the regenerate. Here, we elucidate the functions of the early wound epidermis, and further reveal midkine (mk) as a dual regulator of both AEC development and inflammation during the initiation of axolotl limb regeneration. Through loss- and gain-of-function experiments, we demonstrate that mk acts as both a critical survival signal to control the expansion and function of the early wound epidermis and an anti-inflammatory cytokine to resolve early injury-induced inflammation. Altogether, these findings unveil one of the first identified regulators of AEC development and provide fundamental insights into early wound epidermis function, development, and the initiation of limb regeneration.





Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. 653-658 ◽  
Author(s):  
C. Aztekin ◽  
T. W. Hiscock ◽  
J. C. Marioni ◽  
J. B. Gurdon ◽  
B. D. Simons ◽  
...  

Unlike mammals, Xenopus laevis tadpoles have a high regenerative potential. To characterize this regenerative response, we performed single-cell RNA sequencing after tail amputation. By comparing naturally occurring regeneration-competent and -incompetent tadpoles, we identified a previously unrecognized cell type, which we term the regeneration-organizing cell (ROC). ROCs are present in the epidermis during normal tail development and specifically relocalize to the amputation plane of regeneration-competent tadpoles, forming the wound epidermis. Genetic ablation or manual removal of ROCs blocks regeneration, whereas transplantation of ROC-containing grafts induces ectopic outgrowths in early embryos. Transcriptional profiling revealed that ROCs secrete ligands associated with key regenerative pathways, signaling to progenitors to reconstitute lost tissue. These findings reveal the cellular mechanism through which ROCs form the wound epidermis and ensure successful regeneration.



Sign in / Sign up

Export Citation Format

Share Document