gentisate pathway
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Andrea Cillingová ◽  
Renáta Tóth ◽  
Anna Mojáková ◽  
Igor Zeman ◽  
Romana Vrzoňová ◽  
...  

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in β-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


2016 ◽  
Vol 6 (12) ◽  
pp. 4047-4058 ◽  
Author(s):  
Igor Zeman ◽  
Martina Neboháčová ◽  
Gabriela Gérecová ◽  
Kornélia Katonová ◽  
Eva Jánošíková ◽  
...  

Abstract The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.


2015 ◽  
Vol 81 (17) ◽  
pp. 5753-5760 ◽  
Author(s):  
Kun Liu ◽  
Ying Xu ◽  
Ning-Yi Zhou

ABSTRACTIn contrast to the well-characterized and more common maleylpyruvate isomerization route of the gentisate pathway, the direct hydrolysis route occurs rarely and remains unsolved. InPseudomonas alcaligenesNCIMB 9867, two gene clusters,xlnandhbz, were previously proposed to be involved in gentisate catabolism, and HbzF was characterized as a maleylpyruvate hydrolase converting maleylpyruvate to maleate and pyruvate. However, the complete degradation pathway of gentisate through direct hydrolysis has not been characterized. In this study, we obtained from the NCIMB culture collection aPseudomonas alcaligenesspontaneous mutant strain that lacked thexlncluster and designated the mutant strain SponMu. Thehbzcluster in strain SponMu was resequenced, revealing the correct location of the stop codon forhbzIand identifying a new gene,hbzG. HbzIJ was demonstrated to be a maleate hydratase consisting of large and small subunits, stoichiometrically converting maleate to enantiomerically pured-malate. HbzG is a glutathione-dependent maleylpyruvate isomerase, indicating the possible presence of two alternative pathways of maleylpyruvate catabolism. However, thehbzF-disrupted mutant could still grow on gentisate, while disruption ofhbzGprevented this ability, indicating that the direct hydrolysis route was not a complete pathway in strain SponMu. Subsequently, ad-malate dehydrogenase gene was introduced into thehbzG-disrupted mutant, and the engineered strain was able to grow on gentisate via the direct hydrolysis route. This fills a gap in our understanding of the direct hydrolysis route of the gentisate pathway and provides an explanation for the high yield ofd-malate from maleate by thisd-malate dehydrogenase-deficient natural mutant.


2014 ◽  
Vol 80 (13) ◽  
pp. 4051-4062 ◽  
Author(s):  
Dong-Wei Chen ◽  
Yun Zhang ◽  
Cheng-Ying Jiang ◽  
Shuang-Jiang Liu

ABSTRACTA previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway inAzoarcus evansii(R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that theComamonas testosteronistrain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (boxgenes) and gentisate (gengenes) pathways were identified. Genetic disruption revealed that thegengenes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigatedgengene regulation in the CNB-1 strain. The PgenApromoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present.In vivostudies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenApromoter, while transcription ofgenAwas upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail.


2012 ◽  
Vol 79 (3) ◽  
pp. 1044-1047 ◽  
Author(s):  
Kun Liu ◽  
Ting-Ting Liu ◽  
Ning-Yi Zhou

ABSTRACTHbzF fromPseudomonas alcaligenesNCIMB 9867 was purified to homogeneity as a His-tagged protein and likely a dimer by SDS-PAGE and gel filtration. This protein was demonstrated to be a novel maleylpyruvate hydrolase, catalyzing direct hydrolysis of maleylpyruvate to maleate and pyruvate, and belongs to the fumarylacetoacetate hydrolase superfamily. This study reveals the genetic determinate for the direct maleylpyruvate hydrolysis in the gentisate pathway, complementary to the well-studied maleylpyruvate isomerization route.


Microbiology ◽  
2011 ◽  
Vol 157 (10) ◽  
pp. 2891-2903 ◽  
Author(s):  
Hyo Jung Lee ◽  
Jeong Myeong Kim ◽  
Se Hee Lee ◽  
Minjeong Park ◽  
Kangseok Lee ◽  
...  

Polaromonas naphthalenivorans strain CJ2 metabolizes naphthalene via the gentisate pathway and has recently been shown to carry a third copy of gentisate 1,2-dioxygenase (GDO), encoded by nagI3, within a previously uncharacterized naphthalene catabolic gene cluster. The role of this cluster (especially nagI3) in naphthalene metabolism of strain CJ2 was investigated by documenting patterns in regulation, transcription and enzyme activity. Transcriptional analysis of wild-type cells showed the third cluster to be polycistronic and that nagI3 was expressed at a relatively high level. Individual knockout mutants of all three nagI genes were constructed and their influence on both GDO activity and cell growth was evaluated. Of the three knockout strains, CJ2ΔnagI3 showed severely diminished GDO activity and grew slowest on aromatic substrates. These observations are consistent with the hypothesis that nagI3 may prevent toxic intracellular levels of gentisate from accumulating in CJ2 cells. All three nagI genes from strain CJ2 were cloned into Escherichia coli: the nagI2 and nagI3 genes were successfully overexpressed. The subunit mass of the GDOs were ~36–39 kDa, and their structures were deduced to be dimeric. The K m values of NagI2 and NagI3 were 31 and 10 µM, respectively, indicating that the higher affinity of NagI3 for gentisate may protect the wild-type cells from gentisate toxicity. These results provide clues for explaining why the third gene cluster, particularly the nagI3 gene, is important in strain CJ2. The organization of genes in the third gene cluster matched that of clusters in Polaromonas sp. JS666 and Leptothrix cholodnii SP-6. While horizontal gene transfer (HGT) is one hypothesis for explaining this genetic motif, gene duplication within the ancestral lineage is equally valid. The HGT hypothesis was discounted by noting that the nagI3 allele of strain CJ2 did not share high sequence identity with its homologues in Polaromonas sp. JS666 and L. cholodnii SP-6.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2152-2163 ◽  
Author(s):  
Zuzana Holesova ◽  
Michaela Jakubkova ◽  
Ivana Zavadiakova ◽  
Igor Zeman ◽  
Lubomir Tomaska ◽  
...  

The pathogenic yeast Candida parapsilosis degrades various hydroxy derivatives of benzenes and benzoates by the gentisate and 3-oxoadipate pathways. We identified the genes MNX1, MNX2, MNX3, GDX1, HDX1 and FPH1 that code for enzymes involved in these pathways in the complete genome sequence of C. parapsilosis. Next, we demonstrated that MNX1, MNX2, MNX3 and GDX1 are inducible and transcriptionally controlled by hydroxyaromatic substrates present in cultivation media. Our results indicate that MNX1 and MNX2 code for flavoprotein monooxygenases catalysing the first steps in the 3-oxoadipate and gentisate pathways, respectively (i.e. 4-hydroxybenzoate 1-hydroxylase and 3-hydroxybenzoate 6-hydroxylase). Moreover, we found that the two pathways differ by their intracellular localization. The enzymes of the 3-oxoadipate pathway, Mnx1p and Mnx3p, localize predominantly in the cytosol. In contrast, intracellular localization of the components of the gentisate pathway, Mnx2p and Gdx1p, depends on the substrate in the cultivation medium. In cells growing on glucose these proteins localize in the cytosol, whereas in media containing hydroxyaromatic compounds they associate with mitochondria. Finally, we showed that the overexpression of MNX1 or MNX2 increases the tolerance of C. parapsilosis cells to the antifungal drug terbinafine.


2005 ◽  
Vol 187 (22) ◽  
pp. 7696-7702 ◽  
Author(s):  
Xiaoli Gao ◽  
Chew Ling Tan ◽  
Chew Chieng Yeo ◽  
Chit Laa Poh

ABSTRACT The xlnD gene from Pseudomonas alcaligenes NCIMB 9867 (strain P25X) was shown to encode 3-hydroxybenzoate 6-hydroxylase I, the enzyme that catalyzes the NADH-dependent conversion of 3-hydroxybenzoate to gentisate. Active recombinant XlnD was purified as a hexahistidine fusion protein from Escherichia coli, had an estimated molecular mass of 130 kDa, and is probably a trimeric protein with a subunit mass of 43 kDa. This is in contrast to the monomeric nature of the few 3-hydroxybenzoate 6-hydroxylases that have been characterized thus far. Like other 3-hydroxybenzoate 6-hydroxylases, XlnD could utilize either NADH or NADPH as the electron donor. P25X harbors a second 3-hydroxybenzoate 6-hydroxylase II that was strictly inducible by specific aromatic substrates. However, the degradation of 2,5-xylenol and 3,5-xylenol in strain P25X was found to be dependent on the xlnD-encoded 6-hydroxylase I and not the second, strictly inducible 6-hydroxylase II.


2005 ◽  
Vol 71 (7) ◽  
pp. 3442-3452 ◽  
Author(s):  
Xi-Hui Shen ◽  
Cheng-Ying Jiang ◽  
Yan Huang ◽  
Zhi-Pei Liu ◽  
Shuang-Jiang Liu

ABSTRACT Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Δncg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.


Sign in / Sign up

Export Citation Format

Share Document