antisense constructs
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Chirag Maheshwari ◽  
Robert A Coe ◽  
Shanta Karki ◽  
Sarah Covshoff ◽  
Ronald Tapia ◽  
...  

AbstractWe generated antisense constructs targeting two of the five Rubisco small subunit genes (OsRBCS2 and 4) which account for between 30-40% of the RBCS transcript abundance in leaf blades. The constructs were driven by a maize phosphoenolpyruvate carboxylase (PEPC) promoter known to have enriched expression in mesophyll cells (MCs). In the resulting lines leaf Rubisco protein content was reduced by between 30-50% and CO2 assimilation rate was limited under photorespiratory and non-photorespiratory conditions. A relationship between Rubisco protein content and CO2 assimilation rate was found. This was associated with a significant reduction in dry biomass accumulation and grain yield of between 37 to 70%. In addition to serving as a resource for reducing Rubisco accumulation in a cell-preferential manner, these lines allow us to characterize gene function and isoform specific suppression on photosynthesis and growth. Our results suggest that the knockdown of multiple genes is required to completely reduce Rubisco accumulation in MCs.


2020 ◽  
Vol 2 (1) ◽  
pp. 61-62

White spot syndrome virus (WSSV) belongs to a new virus family, Nimaviridae, genus Whispovirus and contains a large circular double-stranded DNA genome of 292,967 bp. WSSV virions are ellipsoid to bacilliform, enveloped particles with a distinctive tail-like appendage at one end. They can be found throughout the body of infected shrimp. The virions contain one nucleocapsid with a typical striated appearance and 5 major and at least 13 minor proteins. WSSV, which was first discovered in Southeast Asia around 1992, is currently the most serious viral pathogen of shrimp worldwide. It causes up to 100% mortality within 7 to 10 days in commercial shrimp farms, resulting in large economic losses amounting to billions of US dollars across different countries to the shrimp farming industry. In a natural situation, shrimp become infected through both oral and water-borne routes, and the gills are thought to be a major point of viral entry. Considering the global economic and sociological importance of shrimp farming and its continued high growth, the development of novel control measures becomes necessary against the outbreak of WSSV. A number of strategies have been used to control WSSV, each with some limitations. Conventional control strategies such as improvement of environmental conditions, stocking of pathogen-free post-larvae, and augmentation of disease resistance by oral immune-stimulants or probiotics are currently employed to control WSSV infection. Use of recombinant viral proteins as vaccines that induce a specific immune response and protection has been demonstrated to control WSSV. Other studies have shown successful vaccination of shrimp with DNA vaccines that have prolonged effects. The RNA interference (RNAi) mediated silencing of targeted viral mRNAs holds tremendous potential for controlling shrimp diseases. The silencing of viruses using RNAi has been experimentally demonstrated for WSSV in shrimp by injecting or feeding synthetic siRNA, long double-stranded RNA (dsRNA), and short/long-hairpin RNA (shRNA/lhRNA) prepared by in vitro transcription or expressed in bacteria. In addition to targeting viral proteins, protection of WSSV has also been achieved by dsRNA targeted against shrimp PmRab7, a protein important for viral entry into the host cells. Antisense constructs offered strong protection in WSSV challenged shrimp, P. monodon, with a corresponding decrease in viral load. Antisense constructs expressing VP24 and VP28 offered the best protection with a consistent reduction in WSSV copy number in both cell culture and in experimental shrimp. The advantage of using antisense constructs is their lack of toxicity and immunogenicity and their high specificity towards the desired target. The usage of edible pellet feed coated with dsRNA against WSSV has shown promising results. Overall, the present investigation clearly demonstrates that it is possible to induce strong protection in shrimp against WSSV infection using host promoter-driven antisense constructs in controlled laboratory-scale experiments. However, it is important to develop a simple and efficient delivery system for extending this study to the field level.


2013 ◽  
Vol 16 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Sajad Ahanger ◽  
Supriyanka Sandaka ◽  
Deepika Ananad ◽  
Madhu K. Mani ◽  
Ravinder Kondadhasula ◽  
...  

2011 ◽  
Vol 2 (1) ◽  
pp. 3
Author(s):  
Michael Rossbach

MicroRNAs (miRNAs) are a class of highly evolutionarily conserved non-coding RNAs (ncRNAs) that modulate gene expression. Several studies have shown that the expression of miRNAs is deregulated in human malignancies. For ncRNAs and miRNAs, such gene-profiling studies in tumorigenic tissues have identified significant signatures that are of both diagnostic and prognostic value. Addressing the functions of ncRNAs not only give insights into the molecular mechanisms that underlie complex genetic processes, but may also elucidate novel mechanisms that contribute to early stages of tumor development, progression and metastasis. MiRNA-based novel approaches target the ncRNAome, including, for instance, miRNA expression levels and improved designs of miRNA-mimics or more precise target-predictions, prevent off-target effects of novel drugs and make miRNAs become a highly efficient class of therapeutics. For miRNA-based therapeutic studies two direct strategies are currently under investigation, viz. (i) the overexpression of given miRNAs to inhibit the expression of protein-coding genes or (ii) the inhibition of target miRNAs with antisense constructs like antagomiRs. Indirect strategies include the use of novel drugs that modulate miRNA expression levels by directly targeting their processing or transcription. Further, miRNA-based biomarkers have a significant impact on the development of both therapeutic and diagnostic agents, a concept known as theranostics and are highly relevant for drug development and personalized medicine.


2011 ◽  
Vol 317 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Muriel Dufour ◽  
Felicity S.A. McLeod ◽  
Robin S. Simmonds

2007 ◽  
Vol 409 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Somdeb Bosedasgupta ◽  
Benu Brata Das ◽  
Souvik Sengupta ◽  
Agneyo Ganguly ◽  
Amit Roy ◽  
...  

The unusual, heterodimeric topoisomerase IB of Leishmania shows functional activity upon reconstitution of the DNA-binding large subunit (LdTOPIL; or L) and the catalytic small subunit (LdTOPIS; or S). In the present study, we generated N- and C-terminal-truncated deletion constructs of either subunit and identified proteins LdTOPIL39–456 (lacking amino acids 1–39 and 457–635) and LdTOPIS210–262 (lacking amino acids 1–210) as the minimal interacting fragments. The interacting region of LdTOPIL lies between residues 40–99 and 435–456, while for LdTOPIS it lies between residues 210–215 and 245–262. The heterodimerization between the two fragments is weak and therefore co-purified fragments showed reduced DNA binding, cleavage and relaxation properties compared with the wild-type enzyme. The minimal fragments could complement their respective wild-type subunits inside parasites when the respective subunits were down-regulated by transfection with conditional antisense constructs. Site-directed mutagenesis studies identify Lys455 of LdTOPIL and Asp261 of LdTOPIS as two residues involved in subunit interaction. Taken together, the present study provides crucial insights into the mechanistic details for understanding the unusual structure and inter-subunit co-operativity of this heterodimeric enzyme.


Sign in / Sign up

Export Citation Format

Share Document