scholarly journals Seasonal Surface Fluctuation of a Slow-Moving Landslide Detected by Multitemporal Interferometry (MTI) on the Huafan University Campus, Northern Taiwan

2021 ◽  
Vol 13 (19) ◽  
pp. 4006
Author(s):  
Chiao-Yin Lu ◽  
Yu-Chang Chan ◽  
Jyr-Ching Hu ◽  
Chia-Han Tseng ◽  
Che-Hsin Liu ◽  
...  

A slow-moving landslide on the Huafan University campus, which is located on a dip slope in northern Taiwan, has been observed since 1990. However, reliable monitoring data are difficult to acquire after 2018 due to the lack of continuous maintenance of the field measurement equipment. In this study, the multitemporal interferometry (MTI) technique is applied with Sentinel-1 SAR images to monitor the slow-moving landslide from 2014–2019. The slow-moving areas detected by persistent scatterer (PS) pixels are consistent with the range of previous studies, which are based on in situ monitoring data and field surveys. According to the time series of the PS pixels, a long period gravity-induced deformation of the slow-moving landslide can be clearly observed. Moreover, a short period seasonal surface fluctuation of the slow-moving landslide, which has seldom been discussed before, can also be detected in this study. The seasonal surface fluctuation is in-phase with precipitation, which is inferred to be related to the geological and hydrological conditions of the study area. The MTI technique can compensate for the lack of surface displacement data, in this case, the Huafan University campus, and provide information for evaluating and monitoring slow-moving landslides for possible landslide early warning in the future.

2020 ◽  
Vol 12 (8) ◽  
pp. 1305 ◽  
Author(s):  
Gokhan Aslan ◽  
Michael Foumelis ◽  
Daniel Raucoules ◽  
Marcello De Michele ◽  
Severine Bernardie ◽  
...  

Continuous geodetic measurements in landslide prone regions are necessary to avoid disasters and better understand the spatiotemporal and kinematic evolution of landslides. The detection and characterization of landslides in high alpine environments remains a challenge associated with difficult accessibility, extensive coverage, limitations of available techniques, and the complex nature of landslide process. Recent studies using space-based observations and especially Persistent Scatterer Interferometry (PSI) techniques with the integration of in-situ monitoring instrumentation are providing vital information for an actual landslide monitoring. In the present study, the Stanford Method for Persistent Scatterers InSAR package (StaMPS) is employed to process the series of Sentinel 1-A and 1-B Synthetic Aperture Radar (SAR) images acquired between 2015 and 2019 along ascending and descending orbits for the selected area in the French Alps. We applied the proposed approach, based on extraction of Active Deformation Areas (ADA), to automatically detect and assess the state of activity and the intensity of the suspected slow-moving landslides in the study area. We illustrated the potential of Sentinel-1 data with the aim of detecting regions of relatively low motion rates that be can attributed to activate landslide and updated pre-existing national landslide inventory maps on a regional scale in terms of slow moving landslides. Our results are compared to pre-existing landslide inventories. More than 100 unknown slow-moving landslides, their spatial pattern, deformation rate, state of activity, as well as orientation are successfully identified over an area of 4000 km2 located in the French Alps. We also address the current limitations due the nature of PSI and geometric characteristic of InSAR data for measuring slope movements in mountainous environments like Alps.


2020 ◽  
Vol 12 (21) ◽  
pp. 3664
Author(s):  
Fábio F. Gama ◽  
José C. Mura ◽  
Waldir R. Paradella ◽  
Cleber G. de Oliveira

Differential Interferometric SAR (DInSAR) has been used to monitor surface deformations in open pit mines and tailings dams. In this paper, ground deformations have been detected on the area of tailings Dam-I at the Córrego do Feijão Mine (Brumadinho, Brazil) before its catastrophic failure occurred on 25 January 2019. Two techniques optimized for different scattering models, SBAS (Small BAseline Subset) and PSI (Persistent Scatterer Interferometry), were used to perform the analysis based on 26 Sentinel-1B images in Interferometric Wide Swath (IW) mode, which were acquired on descending orbits from 03 March 2018 to 22 January 2019. A WorldDEM Digital Surface Model (DSM) product was used to remove the topographic phase component. The results provided by both techniques showed a synoptic and informative view of the deformation process affecting the study area, with the detection of persistent trends of deformation on the crest, middle, and bottom sectors of the dam face until its collapse, as well as the settlements on the tailings. It is worth noting the detection of an acceleration in the displacement time-series for a short period near the failure. The maximum accumulated displacements detected along the downstream slope face were −39 mm (SBAS) and −48 mm (PSI). It is reasonable to consider that Sentinel-1 would provide decision makers with complementary motion information to the in situ monitoring system for risk assessment and for a better understanding of the ongoing instability phenomena affecting the tailings dam.


2019 ◽  
Vol 260 ◽  
pp. 105244 ◽  
Author(s):  
Nicoletta Nappo ◽  
Dario Peduto ◽  
Olga Mavrouli ◽  
Cees J. van Westen ◽  
Giovanni Gullà

2012 ◽  
Vol 204-208 ◽  
pp. 196-201 ◽  
Author(s):  
Jian Cong Xu ◽  
Yi Wei Xu

The parabolic-apex numerical back-analysis method (PNBM) was proposed to obtain such physical-mechanics parameters as Young's modulus and lateral pressure coefficient of surrounding rock by 3D FEM numerical analysis based on in-situ monitoring data. Taking Xiang-an Subsea Tunnel (located in Xiamen, Fujian Province, China) for example, adopting the PNBM using ABAQUS software, three dimensional elastic-plastic FEM-PNBM of tunnel surrounding rock was validated using in-situ monitoring data. The results show as follows: Using the PNBM, not only may high calculation precision be obtained, better meeting the demand of actual projects, but also more reasonable and reliable physical mechanics indices of surrounding rock such as Young's modulus and lateral confinement pressure coefficient, may be obtained. The applicability and the simplicity of this proposed method also support its usefulness.


2010 ◽  
Author(s):  
M. A. Zoran ◽  
R. S. Savastru ◽  
D. M. Savastru ◽  
S. I. Miclos ◽  
M. N. Tautan ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 515-529
Author(s):  
Luciana Londero Brandli ◽  
Amanda Lange Salvia ◽  
Leila Dal Moro ◽  
Vanessa Tibola da Rocha ◽  
Janaina Mazutti ◽  
...  

Purpose This paper aims to highlight the contribution of ecological fairs to the promotion of sustainability in university campuses, based on a case study carried out at the University of Passo Fundo, located in Southern Brazil. Design/methodology/approach Producers and consumers of the ecological fairs were interviewed to analyse how the social, economic and environmental spheres of sustainable development are impacted by these fairs. In total, 24 interviews were conducted. Findings The results showed how fairs positively impact the academic and local community while bringing sustainability into university campuses. Research limitations/implications The main limitations of this study were the number of interviews and the short period during when the study was conducted. Practical implications This case study demonstrated how the promotion of ecological fairs on a university campus plays an important role in the implementation and practice of sustainability and can serve as an example for other institutions that intend to work on similar projects. Originality/value This paper contributes to the literature by providing a discussion on how ecological fairs represent a good addition in the process of universities to become more sustainable and which aspects of each sustainability sphere are involved.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Haiyou Peng ◽  
Bolin Chen ◽  
Ping Dong ◽  
Si chen ◽  
Yunping Liao ◽  
...  

Limited by geological survey methods, processes, and cost, it has long been a difficult thing to accurately detect the position of landslide slip surface and monitor the landslide internal deformation. Fiber Bragg grating (FBG) sensing technology has been widely used in geological engineering and geotechnical engineering due to its high-precision property. In this research, FBG sensing technology was applied to the monitoring of landslide internal deformation in Toudu, Chongqing, China. The in situ monitoring by FBG accurately determined the position of the landslide slip surface. Based on the relationship between fiber grating strain and deflection, the formula between landslide internal deformation and fiber grating strain was obtained, and the rationality of the formula was verified by the monitoring data of surface displacement. Finally, the internal deformation at the monitoring point of the Toudu landslide was calculated and the mechanism of the landslide was analyzed.


2014 ◽  
Vol 580-583 ◽  
pp. 787-790
Author(s):  
Hai Xia Sun ◽  
Ke Zhang ◽  
Si Li Chen

This article mainly expounds the importance of in-situ monitoring on the construction process of deep foundation pit. Taking the deep foundation pit of some Shenyang metro station for example, the deformation features of the supporting structure and the internal and external of foundation pit is analyzed, according to the monitoring data of the fender pile displacement during the excavation of deep foundation pit. The conclusion is obtained that the timely and accurate in-situ monitoring information is necessary to guaranteeing construction safety. We should pay more attention to the excavation speed and exert the interior support timely during the excavation of foundation pit to avoid large deformation and danger. The analytical results of monitoring data shows that the whole stage of foundation pit excavation is stable and the fender pile with internal supports can guarantee the stability of foundation pit.


2020 ◽  
Author(s):  
Alessandro Simoni ◽  
Benedikt Bayer ◽  
Pierpaolo Ciuffi ◽  
Silvia Franceschini ◽  
Matteo Berti

<p>Landslides are widespread landscape features in the Northern Apennine mountain chain and their activity frequently cause damages to settlements and infrastructures. In such context, slow-moving landslides are very common and typically affect fine-grained weathered rocks. Long periods of sustained slow-movements (cms/year) can be interrupted by rapid acceleration and catastrophic failures (ms/day) that are caused by intense rainfall events. Space-borne synthetic aperture radar interferometry (InSAR) proved effective to detect actively deforming phenomena and monitor their evolution in the periods before and after failures. We present InSAR results derived from the Sentinel 1 satellite constellation for landslide cases that underwent reactivation during 2019. In all cases, the catastrophic failures were unexpected and no ground-based monitoring data are available. We processed pre- and post-failure interferograms of SAR images acquired by Sentinel 1 A/B with time spans ranging from 6 to 24 days, removing those having low coherence by manual inspection. The conventional 2-pass technique allowed us to obtain measurements of surface displacement despite the fact that sparse to none infrastructures nor bare rock outcrops are present on the landslide bodies. Our interferograms show that surface displacements are visible well in advance of the actual failure. They display nearly continuous downslope motion with seasonal velocity changes. Time series between 2015 and 2019 shows that surface displacements can be appreciated throughout most part of the year with snow cover and summer peak of vegetation being the most notable exceptions. Distinct accelerations can be detected in space and time during the weeks and months preceding the reactivation.</p><p>We compare time-dependent deformations to precipitation patterns to explore their relationship and to document the transition from stable to unstable deformation. Our work suggests that InSAR interferometry can be successfully used to measure pre-failure displacements and detect slow-moving landslides that are more prone to reactivation in case of rainfall events.</p>


Sign in / Sign up

Export Citation Format

Share Document