scholarly journals Vanadium and Tannic Acid-Based Composite Conversion Coating for 6063 Aluminum Alloy

2021 ◽  
Vol 8 ◽  
Author(s):  
Wen Zhu ◽  
Furui Chen ◽  
Youbin Luo ◽  
Zhijun Su ◽  
Wenfang Li ◽  
...  

In this study, a vanadium (V) and tannic acid-based composite conversion coating (VTACC) was prepared on 6063 aluminum alloy (AA6063) to increase its corrosion resistance. The surface morphology and compositions of the VTACCs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the coatings was investigated by linear polarization and electrochemical impedance spectra (EIS). The self-healing ability of the coating was detected by SEM, EDS, and scanning vibrating electrode technique (SVET) measurements. The coating mainly consisted of metal oxides, including Al2O3, VO2, V2O3, and V2O5, and metal organic complexes (Al and V-complexes). The electrochemical measurement results indicated that the best corrosion resistance of VTACC was acquired when the treatment time was 12 min. Furthermore, because a new coating with vanadium rich oxide was developed on the scratch area, artificial scratch VTACC surfaces were repaired after several days of immersion in 3.5-wt% NaCl solution.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng-xue Yu ◽  
Rui-jun Zhang ◽  
Yong-fu Tang ◽  
Yan-ling Ma ◽  
Wen-chao Du

Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF60.75 g·L−1, NaF 1.25 g·L−1, MgSO41.0 g/L, and tetra-n-butyl titanate (TBT) 0.08 g·L−1. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrum (FT-IR) were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS). Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.


CORROSION ◽  
2004 ◽  
Vol 60 (3) ◽  
pp. 284-296 ◽  
Author(s):  
H. Guan ◽  
R. G. Buchheit

Abstract In this paper, the formation, chemistry, morphology, and corrosion protection of a new type of inorganic conversion coating is described. This coating, referred to as a vanadate conversion coating (VCC), forms on aluminum alloy substrates in a matter of minutes during simple immersion in aqueous vanadate-based solutions at ambient temperatures. VCCs are yellow in color and conformal across the surface of aluminum alloy 2024-T3 (AA2024-T3 [UNS A92024]) substrates. Auger electron sputter depth profiles and x-ray absorption near-edge spectroscopy show that VCCs formed by a 3-min immersion are 300 nm to 500 nm thick and consist of a mixture of vanadium oxides and other components in the coating bath. In anodic polarization experiments conducted in aerated chloride solutions, VCCs increase the pitting potential and decrease the rate of oxygen reduction. When characterized by electrochemical impedance spectroscopy, VCCs demonstrate a low-frequency impedance between 1 MΩ-cm2 and 2 MΩ-cm2 after 24 h exposure to aerated 0.5 M sodium chloride (NaCl) solutions. In salt spray testing conducted according to ASTM B117, VCCs suppress formation of large pits for more than 168 h. VCCs also appear to be self-healing. Analysis of solution in contact with VCCs by inductively coupled plasma emission spectroscopy indicates that vanadate is released into solution upon exposure. Vanadium deposits were identified by x-ray microchemical analysis on a bare alloy substrate held in close proximity to a vanadate conversion-coated surface, and corrosion resistance of this bare surface was observed to increase during exposure. An important component of VCC formation appears to involve inorganic polymerization of V5+, which leads to the buildup of a film that passivates the surface and inhibits corrosion.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


Coatings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 30 ◽  
Author(s):  
Muhammad Ahsan Iqbal ◽  
Michele Fedel

In this study, a series of MgAl–layered double hydroxide (LDH) thin films were synthesized by a single step hydrothermal process at different synthetic conditions on AA6082, and the combined effect of reaction temperatures and crystallization times on in situ growth MgAl–LDH structural geometry, growth rate, and more importantly on the corresponding corrosive resistance properties are briefly discussed. The synthesis of LDH was performed at reaction temperatures of 40, 60, 80, and 100 °C, while the treatment time was varied at 12, 18, and 24 h. The as-prepared synthetic coatings were characterized by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), while the corresponding corrosion protection efficiency of the developed coating was studied through potentiodynamic polarization studies and electrochemical impedance spectra. The findings demonstrated that extended crystallization time and reaction temperature impart a significant effect on the oriented growth of layered double hydroxide, the surface morphology, and on the film thickness, which had a remarkable influence on the LDH corrosion resistance ability. The LDH coated specimen developed at 100 °C for 18 h reaction time showed a more compact and dense structure compared to the traditional platelet structure obtained at 80 °C for 24 h crystallization time, and interestingly that compact structure exhibited the lowest corrosion current density, up to five orders of magnitude lower than that of bare AA6082.


2013 ◽  
Vol 652-654 ◽  
pp. 1149-1152
Author(s):  
Hui Cheng Yu ◽  
Yi Chun Wei ◽  
Xue Yi Huang ◽  
Fu Hou Lei

Monoethanolamine (MEA) was investigated as corrosion inhibitors of a 6063 aluminum alloy in 3.5 % solution using polarization and electrochemical impedance spectroscopy techniques and weight loss. The polarization curves show that monoethanolamine (MEA) can increase corrosion potential (Ecorr) and pitting corrosion potential (Epit), and decrease corrosion current density (icorr) of the 6063 aluminum alloy. EIS results indicate that monoethanolamine (MEA) can increase impedance of the 6063 aluminum alloy. The results show that monoethanolamine exhibits better inhibitor properties for the 6063 aluminum alloy. Electrochemical test results show monoethanolamine (MEA) can improve corrosion resistance and the inhibition action depends on the concentration of the inhibitor. The weight-loss experiment also proves that monoethanolamine (MEA) can improve the corrosion resistance of the 6063 Al alloy.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1188
Author(s):  
Badar Minhas ◽  
Sahib Dino ◽  
Yu Zuo ◽  
Hongchang Qian ◽  
Xuhui Zhao

By anodization and thermal oxidation at 600 °C, an oxide layer on Ti with excellent corrosion resistance in strong acid solutions was prepared. The structural properties of TiO2 films before and after thermal oxidation were investigated with methods of Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XRD) and X-ray diffraction (XPS). The electrochemical characterization was recorded via electrochemical impedance spectroscopy, potentiodynamic polarization and Mott–Schottky methods. XRD results show that a duplex rutile/anatase structure formed after oxidation, and the amount of anatase phase increased as the treatment time was prolonged from 3 to 9 h. XPS analysis indicates that as the thermal oxidation time increased, more Ti vacancies were present in the titanium oxide films, with decreased donor concentration. Longer thermal oxidation promoted the formation of hydroxides of titanium on the surface, which is helpful to improve the passive ability of the film. The anodized and thermally oxidized Ti samples showed relatively high corrosion resistance in 4 M HCl and 4 M H2SO4 solutions at 100 ± 5 °C. The passive current density values of the thermally oxidized samples were five orders of magnitude under the testing condition compared with that of the anodized sample. With the oxidation time prolonged, the passive current density decreased further to some extent.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


2021 ◽  
Vol 417 ◽  
pp. 127208
Author(s):  
Yue Gong ◽  
Jiwei Geng ◽  
Jie Huang ◽  
Zhe Chen ◽  
Mingliang Wang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Marija Riđošić ◽  
Nebojša D. Nikolić ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Electrodeposition and characterization of novel ceria-doped Zn-Co composite coatings was the main goal of this research. Electrodeposited composite coatings were compared to pure Zn-Co coatings obtained under the same conditions. The effect of two ceria sources, powder and home-made sol, on the morphology and corrosion resistance of the composite coatings was determined. During the electrodeposition process the plating solution was successfully agitated in an ultrasound bath. The source of the particles was found to influence the stability and dispersity of plating solutions. The application of ceria sol resulted in an increase of the ceria content in the resulting coating and favored the refinement from cauliflower-like morphology (Zn-Co) to uniform and compact coral-like structure (Zn-Co-CeO2 sol). The corrosion resistance of the composite coatings was enhanced compared to bare Zn-Co as evidenced by electrochemical impedance spectroscopy and scanning Kelvin probe results. Zn-Co doped with ceria particles originating from ceria sol exhibited superior corrosion resistance compared to Zn-Co-CeO2 (powder) coatings. The self-healing rate of artificial defect was calculated based on measured Volta potential difference for which Zn-Co-CeO2 (sol) coatings exhibited a self-healing rate of 73.28% in a chloride-rich environment.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document