scholarly journals Estimation of Phase Ratio in Bulk, Textured TWIP/TRIP Steels from Pole Figures

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4132
Author(s):  
Marton Benke ◽  
Adrienn Hlavacs ◽  
Ferenc Kristaly ◽  
Mate Sepsi ◽  
Valeria Mertinger

The volume fraction of austenite (γ), ε martensite and α′ martensite is of key importance in the research of TWIP/TRIP steels. When mechanical loading is involved, the crystallographic texture also develops, which complicates X-ray diffraction-based phase ratio determination. The problem is more pronounced when only a couple, or only one Bragg-reflection can be measured. A solution for such cases is to determine the ratio of the phases based on the pole distribution function of a selected Bragg-reflection of the present phases. In this manuscript, this method is reconsidered for and applied to non-transmittable bulk specimens for the first time in the reflection mode of XRD pole figure measurements. First, the method was applied to a series of γ–α′ powder mixtures. The results were compared to those obtained by the Rietveld method. Afterwards, the technique was applied to strongly textured, bulk TWIP/TRIP steel specimens which were tensile tested at different temperatures. It was shown that the results of the presented method were close to those of the Rietveld technique in the case of powder mixtures. The results of the tensile-tested steels revealed that the α′ content increases with decreasing test temperatures, and the variation of the α′ ratio correlates very well with the ultimate tensile strength versus the temperature, confirming the contribution of the α′ content to the strength of TWIP/TRIP steels.

2020 ◽  
Vol 86 (12) ◽  
pp. 23-31
Author(s):  
V. F. Shamray ◽  
V. N. Serebryany ◽  
A. S. Kolyanova ◽  
V. I. Kalita ◽  
V. S. Komlev ◽  
...  

Artificial hydroxyapatite exhibits an excellent biocompatibility with tissues of human body. However, poor mechanical properties of hydroxyapatites and low reliability in wet environments restrict their use. These limitations can be overcome by applying the hydroxyapatite as a coating onto metallic implants. X-ray diffraction analysis (restoration of orientation distribution function from pole figures and the Rietveld method) and scanning electron microscopy have been used to study thick (~330 μm) plasma-sprayed hydroxyapatite coatings. The coatings were deposited onto Ti – 2Al – 1Mn alloy substrates, one of which was held at room temperature (20°C) whereas the other substrate was preheated to 550°C. The texture of the coating deposited on substrate held at room temperature is characterized by the (001)[510] orientation, the volume fraction of which is 0.08, while the coating deposited on preheated substrate has the (001)[410] orientation, the volume fraction of which is 0.10. Results of texture analysis are qualitatively supported by the Rietveld refinement data. The problem of the formation of basal texture in plasma-sprayed hydroxyapatite coatings is discussed in terms of quantitative texture analysis in relation to the differences in the substrate temperature and spraying parameters. It was concluded that the quantitative texture analysis is of importance for deeper understanding the effect of spraying parameters on the formation of hydroxyapatite coatings.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 710
Author(s):  
Natalia Narkevich ◽  
Yevgeny Deryugin ◽  
Yury Mironov

The deformation behavior, mechanical properties, and microstructure of Fe-Cr-Mn-0.53%N austenitic stainless steel were studied at a temperature range of 77 up to 293 K. The dynamics of the steel elongation were non-monotonic with a maximum at 240–273 K, when peaks of both static atom displacements from their equilibrium positions in austenite and residual stresses in the tensile load direction were observed. The results of X-ray diffraction analysis confirmed that the only stress-induced γ→ε-martensite transformation occurred upon deformation (no traces of the γ→α′ one was found). In this case, the volume fraction of ε-martensite was about 2–3%. These transformation-induced plasticity (TRIP) patterns were discussed in terms of changes in the phase composition of steel as the root cause.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


2011 ◽  
Vol 681 ◽  
pp. 243-248 ◽  
Author(s):  
Razane Ouahab ◽  
Raphaël Pesci ◽  
Sophie Berveiller ◽  
Etienne Patoor

In this study, the internal stress evolution of the ferrite phase of 16MND5-A508 has been determined using X-Ray Diffraction (XRD). The results of in situ tests combined with XRD analyses and performed at different temperatures (-150°C and 22°C) exhibit a difference of about 200MPa between the macroscopic stress and the ferrite one. The stress state in the cementite is determined by a mixture law; it reaches very high values up to 9000MPa. These results highlight the need to analyze the stress directly in the cementite phase by using appropriate tools, since its volume fraction does not allow it using XRD.


1999 ◽  
Vol 581 ◽  
Author(s):  
L. Bessais ◽  
C. Djega-Mariadassou

ABSTRACTMechanical alloying of ternary SmFe11−xCoxTi (x = 0, 0.5, 1, 1.5, 2) alloys was carried out under an Ar atmosphere. Milled samples were annealed for 30 min in a vacuum at different temperatures Ta from 650 °C to 1150 °C. The effects of heat treatment, on structure and magnetic property changes, have been investigated by means of x-ray diffraction using the Rietveld method, Mössbauer spectroscopy and differential sample magnetometer. Tetragonal ThMn12-type structure is observed for samples annealed at Ta > 900 °C. For 650<Ta<800 °C the TbCu7 type phase was identified as the major phase. Between these two regions a mixture of TbCu7 and ThMn12-type nanocrystalline phases is obtained with a maximum of the coercive field Hc (Hc > 5kOe). The Mössbauer spectra relative to the hexagonal phase show sextuplets broadened by the statistical occupancies of the iron sites. An enhancement of the magnetic properties results from the Co substitution.


2015 ◽  
Vol 651-653 ◽  
pp. 645-650 ◽  
Author(s):  
Bernd Kuhfuss ◽  
Eric Moumi ◽  
Brigitte Clausen ◽  
Jeremy Epp ◽  
Bernd Koehler

Wires with 1 mm initial diameter have been reduced between 10 and 64 percent at different temperatures and strain rates by infeed rotary swaging, which is an incremental cold forming process mainly used for rods and pipes. The volume fraction of martensite in the deformed wires has been determined by X-Ray diffraction and by magnetic induction for different processing parameters. Measurements show that for already small percentage of reduction, martensite is present in the wires and its amount changes with the strain rate and temperature. While for smaller strain rates at room temperature the formation of martensite is promoted, it is restrained for higher strain rates and higher temperatures. Results also reveal that the martensite distribution in the sample is inhomogeneous. Further investigations have been made to analyze the microstructure by optical microscopy and to determine mechanical properties by tensile testing.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7160
Author(s):  
Jae-Hwan Kim ◽  
Myong-Soo Lee ◽  
Jong-Sig Kim

The relationship between the tensile properties and damping capacity of fatigue-damaged Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si alloy under various magnitudes of fatigue stress was investigated. Analytical results show that α′- and ε-martensite were formed due to fatigue stress. The formed α′- and ε-martensite followed a specific orientation and surface relief and intersected with each other. TEM observation and pattern analysis reveal that both α′- and ε-martensites formed on the austenite. As a result of X-ray diffraction, with an increase in fatigue stress, the volume fractions of α′- and ε-martensite were increased, and the increasing rate of the volume fraction of α′-martensite was higher than that of the ε-martensite. As the fatigue stress increased, the tensile strength and damping capacity increased, but the elongation decreased. Besides, as the strength increased and the elongation decreased, the damping capacity decreased. This result is inconsistent with the general tendency for metals but similar to that of alloys undergoing deformation-induced martensite transformation.


2010 ◽  
Vol 09 (06) ◽  
pp. 549-552
Author(s):  
AYACHE RACHID ◽  
BOUABELLOU ABDERRAHMANE ◽  
EICHHORN FRANK

The processes in the synthesis of a thin layer of hexagonal YSi 2-x phase on a single-crystal Si (111) substrate by implantation of 195 keV Y ions with a dose of 2 × 1017 Y +/ cm 2 at 300°C followed by annealing in an N2 atmosphere at different temperatures for 1 h are investigated. The characterization of the as-implanted and annealed samples is performed using Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD) pole figures. Scanning electron microscopy (SEM) was used to view the surface topography. The results show that the orientation relationship between the YSi 2-x layer and Si substrate is YSi 2-x(0001)// Si (111) and YSi 2-x[11–20]// Si [110].


2005 ◽  
Vol 498-499 ◽  
pp. 663-668 ◽  
Author(s):  
P.M. Pimentel ◽  
M.F. Ginani ◽  
Antonio Eduardo Martinelli ◽  
D.M.A. Melo ◽  
A.M. Garrido Pedrosa ◽  
...  

Transition-metal spinels are efficient catalysts in a number of heterogeneous processes, such as CO oxidation, catalytic combustion of hydrocarbons and oxychlorination of methane. The properties of catalytic materials are highly dependent on the synthesis route. Spinels are often produced at high temperatures by the calcination of precursors such as powder mixtures, slurries or resins. Combustion synthesis is a cost-efficient method used to produce homogeneous and fine particles with high reproducibility. Cu0.8Ni0.2Cr2O4 spinel was obtained by the combustion of metallic nitrates using urea as fuel. The resulting powders were calcinated at different temperatures and characterized by thermogravimetric and particle size analyses, X ray diffraction, and scanning electron microscopy. The effect of urea on the control of the process and particle morphology was investigated. The results revealed the formation of porous powders with increasing crystallinity as the calcination temperature increased. Crystallization of spinel started at 700 oC.


2019 ◽  
Vol 116 (4) ◽  
pp. 1104-1109 ◽  
Author(s):  
Chih-Han Wang ◽  
Chih-Chien Lee ◽  
Gwo-Tzong Huang ◽  
Jie-Yu Yang ◽  
Ming-Jye Wang ◽  
...  

The exact superconducting phase of K2−xFe4+ySe5 has so far not been conclusively decided since its discovery due to its intrinsic multiphase in early material. In an attempt to resolve this mystery, we have carried out systematic structural studies on a set of well-controlled samples with exact chemical stoichiometry K2−xFe4+xSe5 (x = 0–0.3) that are heat-treated at different temperatures. Using high-resolution synchrotron radiation X-ray diffraction, our investigations have determined the superconducting transition by focusing on the detailed temperature evolution of the crystalline phases. Our results show that superconductivity appears only in those samples that have been treated at high-enough temperature and then quenched to room temperature. The volume fraction of superconducting transition strongly depends on the annealing temperature used. The most striking result is the observation of a clear contrast in crystalline phase between the nonsuperconducting parent compound K2Fe4Se5 and the superconducting K2−xFe4+ySe5 samples. The X-ray diffraction patterned can be well indexed to the phase with I4/m symmetry in all temperatures investigated. However, we need two phases with similar I4/m symmetry but different parameters to best fit the data at a temperature below the Fe vacancy order temperature. The results strongly suggest that superconductivity in K2−xFe4+ySe5 critically depends on the occupation of Fe atoms on the originally empty 4d site.


Sign in / Sign up

Export Citation Format

Share Document