intragranular acicular ferrite
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 39 (1) ◽  
pp. 466-476
Author(s):  
Meng Xianghai ◽  
Li Mengxing ◽  
Wang Meng ◽  
Wang Zhe ◽  
Li Yungang

AbstractCe, Zr and Ce–Zr composite experimentl steel were prepared by vacuum induction furnace and 550 twin-roll reversible rolling mill. Optical microscope (OM), scanning electronic microscopy (SEM) and energy dispersive spectrometer (EDS) were used to observe the rolling microstructure of the experimental steel. The mechanical properties of the experimental steel were tested and analyzed. The effect of cerium zirconium oxide inclusions on nucleation, tensile and impact fracture mechanism of intragranular acicular ferrite (IAF) was investigated. The results show that the rolling microstructure of steel containing 0.0052% Ce and the steel under composite treatment containing 0.0053% Ce and 0.0055% Zr is refined. IAF generation can be induced by Al–Ce–O inclusion of the size of 4 µm or induced by Al–Ce–Zr–O + MnS inclusion of the size of 3 µm. The yield strength and tensile strength of the steel treated by Ce–Zr are 428 and 590 MPa, respectively, the elongation is 23.55%, the longitudinal impact energy at −60°C is 189 J, which are 31, 45, 46 J and 6.25%, respectively, higher than those of the matrix steel. The dimple of the experimental steel at the fracture surface is larger and deeper than that of the matrix steel. The small inclusions in uniform distribution contribute to the high tensile strength of the experimental steel.


2020 ◽  
Vol 185 ◽  
pp. 61-65
Author(s):  
Shaowen Wu ◽  
Caijun Zhang ◽  
Liguang Zhu ◽  
Qingjun Zhang ◽  
Xuegang Ma

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 946 ◽  
Author(s):  
Ruizhi Wang ◽  
Jian Yang ◽  
Longyun Xu

The characteristics of inclusions and microstructure in heat-affected zones (HAZs) of steel plates with Ca deoxidation after high heat input welding of 400 kJ·cm−1 were investigated through simulated welding experiments and inclusions automatic analyzer systems. Typical inclusions in HAZs of steels containing 11 ppm and 27 ppm Ca were recognized as complex inclusions with the size in the range of 1~3 μm. They consisted of central Al2O3 and peripheral CaS + MnS with TiN distributing at the edge (Al2O3 + CaS + MnS + TiN). With increasing Ca content in steel, the average size of inclusions decreased from 2.23 to 1.46 μm, and the number density increased steadily from 33.7 to 45.0 mm−2. Al2O3 + CaS + MnS + TiN complex inclusions were potent to induce the formation of intragranular acicular ferrite (IAF). Therefore, the HAZ toughness of steel plates after high heat input welding was improved significantly by utilizing oxide metallurgy technology with Ca deoxidation.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1707
Author(s):  
Yutao Zhou ◽  
Shufeng Yang ◽  
Jingshe Li ◽  
Wei Liu ◽  
Anping Dong

The characteristics and formation mechanisms of intragranular acicular ferrite (IAF) in steel with MgO nanoparticle additions were systematically investigated for different isothermal heat-treatment temperatures, and its influence on mechanical properties was also clarified. The results indicate that the inclusions were finely dispersed and refined after adding MgO nanoparticles. In addition, with decreasing heat-treatment temperature, the microstructure changed from grain boundary ferrite (GBF) and polygonal ferrite (PF) to intragranular acicular ferrite. Moreover, the steel with MgO additions had excellent mechanical properties in the temperature range of 973 to 823 K and an average Charpy absorbed energies value of around 174 J at 873 K due to the significant refinement of the microstructure and nucleation of intragranular acicular ferrite.


2017 ◽  
Vol 46 (6) ◽  
pp. 499-507 ◽  
Author(s):  
Liguang Zhu ◽  
Yan Wang ◽  
Shuoming Wang ◽  
Qingjun Zhang ◽  
Caijun Zhang

2017 ◽  
Vol 36 (7) ◽  
pp. 683-691 ◽  
Author(s):  
Mingming Song ◽  
Bo Song ◽  
Zhanbing Yang ◽  
Shenghua Zhang ◽  
Chunlin Hu

AbstractThe influence of Al, Mn and rare earth (RE) on microstructure of C–Mn steel was investigated. The capacities of different RE inclusions to induce intragranular acicular ferrite (AF) formation were compared. Result shows that RE treatment could make C–Mn steel from large amounts of intragranular AF. Al killed is detrimental to the formation of intragranular AF in RE-treated C–Mn steel. An upper bainite structure would replace the AF when Al content increased to 0.027 mass %. The optimal Mn content to form AF is about 0.75–1.31 mass %. The effective RE inclusion which could induce AF nucleation is La2O2S. When patches of MnS are attached on the surface of La2O2S inclusion, AF nucleation capacity of RE-containing inclusion could enlarge obviously. The existence of manganese-depleted zone and low lattice misfit would be the main reason of La-containing inclusion inducing AF nucleation in C–Mn steel.


Sign in / Sign up

Export Citation Format

Share Document