scholarly journals Basolateral amygdala to posterior piriform cortex connectivity ensures precision in learned odor threat

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett S. East ◽  
Gloria Fleming ◽  
Samantha Vervoordt ◽  
Prachi Shah ◽  
Regina M. Sullivan ◽  
...  

AbstractOdor perception can both evoke emotional states and be shaped by emotional or hedonic states. The amygdala complex plays an important role in recognition of, and response to, hedonically valenced stimuli, and has strong, reciprocal connectivity with the primary olfactory (piriform) cortex. Here, we used differential odor-threat conditioning in rats to test the role of basolateral amygdala (BLA) input to the piriform cortex in acquisition and expression of learned olfactory threat responses. Using local field potential recordings, we demonstrated that functional connectivity (high gamma band coherence) between the BLA and posterior piriform cortex (pPCX) is enhanced after differential threat conditioning. Optogenetic suppression of activity within the BLA prevents learned threat acquisition, as do lesions of the pPCX prior to threat conditioning (without inducing anosmia), suggesting that both regions are critical for acquisition of learned odor threat responses. However, optogenetic BLA suppression during testing did not impair threat response to the CS+ , but did induce generalization to the CS−. A similar loss of stimulus control and threat generalization was induced by selective optogenetic suppression of BLA input to pPCX. These results suggest an important role for amygdala-sensory cortical connectivity in shaping responses to threatening stimuli.

2018 ◽  
Author(s):  
Meyer Gabriel ◽  
Caponcy Julien ◽  
Paul A. Salin ◽  
Comte Jean-Christophe

AbstractLocal field potential (LFP) recording is a very useful electrophysiological method to study brain processes. However, this method is criticized for recording low frequency activity in a large area of extracellular space potentially contaminated by distal activity. Here, we theoretically and experimentally compare ground-referenced (RR) with differential recordings (DR). We analyze electrical activity in the rat cortex with these two methods. Compared with RR, DR reveals the importance of local phasic oscillatory activities and their coherence between cortical areas. Finally, we show that DR provides a more faithful assessment of functional connectivity caused by an increase in the signal to noise ratio, and of the delay in the propagation of information between two cortical structures.


2012 ◽  
Vol 107 (1) ◽  
pp. 424-432 ◽  
Author(s):  
Shin Yanagihara ◽  
Neal A. Hessler

The basal ganglia is thought to be critical for motor control and learning in mammals. In specific basal ganglia regions, gamma frequency oscillations occur during various behavioral states, including sleeping periods. Given the critical role of sleep in regulating vocal plasticity of songbirds, we examined the presence of such oscillations in the basal ganglia. In the song system nucleus Area X, epochs of high-gamma frequency (80–160 Hz) oscillation of local field potential during sleep were associated with phasic increases of neural activity. While birds were awake, activity of the same neurons increased specifically when birds were singing. Furthermore, during sleep there was a clear tendency for phase locking of spikes to these oscillations. Such patterned activity in the sleeping songbird basal ganglia could play a role in off-line processing of song system motor networks.


Perception ◽  
2016 ◽  
Vol 46 (3-4) ◽  
pp. 320-332 ◽  
Author(s):  
Emmanuelle Courtiol ◽  
Donald A. Wilson

Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.


2017 ◽  
Author(s):  
James E. Carmichael ◽  
Jimmie M. Gmaz ◽  
Matthijs A. A. van der Meer

AbstractLocal field potentials (LFP) recorded from the human and rodent ventral striatum (vStr) exhibit prominent, behaviorally relevant gamma-band oscillations. These oscillations are related to local spiking activity and transiently synchronize with anatomically related areas, suggesting a possible role in organizing vStr activity. However, the origin of vStr gamma is unknown. We recorded vStr gamma oscillations across a 1.4mm2 grid spanned by 64 recording electrodes as rats rested and foraged for rewards, revealing a highly consistent power gradient originating in the adjacent piriform cortex. Phase differences across the vStr were consistently small (<10°) and current source density analysis further confirmed the absence of local sink-source pairs in the vStr. Reversible occlusions of the ipsilateral (but not contralateral) nostril, known to abolish gamma oscillations in the piriform cortex, strongly reduced vStr gamma power and the occurrence of transient gamma-band events. These results imply that local circuitry is not a major contributor to gamma oscillations in the vStr LFP, and that piriform cortex is an important driver of gamma-band oscillations in the vStr and associated limbic areas.Significance StatementThe ventral striatum is an area of anatomical convergence in circuits underlying motivated behavior, but it remains unclear how its inputs from different sources interact. One of the major proposals of how neural circuits may dynamically switch between convergent inputs is through temporal organization reflected in local field potential (LFP) oscillations. Our results show that in the rat, the mechanisms controlling vStr gamma oscillations are primarily located in the in the adjacent piriform cortex, rather than vStr itself. This provides a novel interpretation of previous rodent work on gamma oscillations in the vStr and related circuits, and an important consideration for future work seeking to use oscillations in these areas as biomarkers in rodent models of human behavioral and neurological disorders.


2019 ◽  
Author(s):  
Agrita Dubey ◽  
Supratim Ray

AbstractElectrocorticogram (ECoG), obtained from macroelectrodes placed on the cortex, is typically used in drug-resistant epilepsy patients, and is increasingly being used to study cognition in humans. These studies often use power in gamma (30-70 Hz) or high-gamma (>80 Hz) ranges to make inferences about neural processing. However, while the stimulus tuning properties of gamma/high-gamma power have been well characterized in local field potential (LFP; obtained from microelectrodes), analogous characterization has not been done for ECoG. Using a hybrid array containing both micro and ECoG electrodes implanted in the primary visual cortex of two female macaques, we compared the stimulus tuning preferences of gamma/high-gamma power in LFP versus ECoG and found them to be surprisingly similar. High-gamma power, thought to index the average firing rate around the electrode, was highest for the smallest stimulus (0.3° radius), and decreased with increasing size in both LFP and ECoG, suggesting local origins of both signals. Further, gamma oscillations were similarly tuned in LFP and ECoG to stimulus orientation, contrast and spatial frequency. This tuning was significantly weaker in electroencephalogram (EEG), suggesting that ECoG is more like LFP than EEG. Overall, our results validate the use of ECoG in clinical and basic cognitive research.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209001 ◽  
Author(s):  
Gabriel Meyer ◽  
Julien Carponcy ◽  
Paul Antoine Salin ◽  
Jean-Christophe Comte

2007 ◽  
Vol 98 (1) ◽  
pp. 394-404 ◽  
Author(s):  
Catherine A. Lowry ◽  
Leslie M. Kay

Recent studies have pointed to olfactory system beta oscillations of the local field potential (15–30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1–120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.


2006 ◽  
Vol 84 (8-9) ◽  
pp. 913-921 ◽  
Author(s):  
Parviz Shahabi ◽  
Javad Mirnajafi-Zadeh ◽  
Yaghoub Fathollahi ◽  
Narges Hoseinmardi ◽  
Mohammad Ebrahim Rezvani ◽  
...  

Adenosine is an endogenous anticonvulsant that exerts its effects through A1 receptors. As the piriform/amygdala is a critical circuit for limbic seizure propagation, in this study, the role of basolateral amygdala A1 receptors on piriform cortex (PC)-kindled seizures was investigated. Rats were kindled by daily electrical stimulation of PC. In fully kindled animals, bilateral intra-amygdala N6-cyclohexyladenosine (CHA; 10–500 µmol/L, a selective A1 receptor agonist) had no effect on kindled-seizure parameters. However, bilateral intra-amygdala 2% lidocaine (reversal neuronal inhibitor) reduced the kindled seizure severity. There was significant increase in stage 4 latency and decrease in stage 5 duration. Bilateral lesion of basolateral amygdala of kindled animals (by electrical DC current) reduced the kindled seizure severity more dramatically. Our results showed afterdischarge duration, stage 5 duration, and seizure duration were decreased and stage 4 latency increased significantly. In addition, daily intra-amygdala CHA had no significant effect on PC kindling acquisition. Therefore, it may be concluded that although the basolateral amygdala neuronal activity has a critical role in the propagation of epileptic seizures from PC, the amygdala A1 receptors have no role in this regard. On the other hand, amygdala A1 receptors have no anticonvulsant or antiepileptogenic effect on PC-kindled seizures.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yan Chen ◽  
Xinyu Liu ◽  
Shan Li ◽  
Hong Wan

Recent studies indicate that the local field potential (LFP) carries information about an animal’s behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k-nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.


2019 ◽  
Author(s):  
Timothy O. West ◽  
David M. Halliday ◽  
Steven L. Bressler ◽  
Simon F. Farmer ◽  
Vladimir Litvak

AbstractBackground‘Non-parametric directionality’ (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015)MethodsThis work presents a validation of NPD in continuous neural recordings (e.g. local field potentials). Specifically, we use autoregressive model to simulate time delayed correlations between neural signals. We then test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) and parallel/convergent signal routing. We also apply NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording.ResultsWe demonstrate that NPD can accurately recover directed functional connectivity from simulations with known patterns of connectivity. The performance of the NPD metric is compared with non-parametric Granger causality (NPG), a well-established methodology for model free estimation of dFC. A series of simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connectivity that are equivalent to NPG. However, we provide evidence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate degrees of instantaneous signal mixing.ConclusionsThe results in this paper highlight that to be practically applied to neural data, connectivity metrics should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging.HighlightsNon-parametric directionality (NPD) is a novel directed connectivity metric.NPD estimates are equivalent to Granger causality but more robust to signal confounds.Multivariate extensions of NPD can correctly identify signal routing.AbbreviationsdFCDirected functional connectivityEEGElectroencephalogramLFPLocal field potentialMEGMagnetoencephalogramMVARMultivariate autoregressive (model)NPDNon-parametric directionalityNPGNon-parametric Granger (causality)SMASupplementary motor areaSNRSignal-to-noise ratioSTNSubthalamic Nucleus


Sign in / Sign up

Export Citation Format

Share Document