scholarly journals Biased Opioid Ligands

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4257 ◽  
Author(s):  
Abdelfattah Faouzi ◽  
Balazs R. Varga ◽  
Susruta Majumdar

Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.

2021 ◽  
Author(s):  
Jin Hee Lee ◽  
Suh-Youn Shon ◽  
Woojin Jeon ◽  
Sung-Jun Hong ◽  
Junsu Ban ◽  
...  

ABSTRACTMorphine is widely used to manage pain in patients, although the risk of side effects is significant. The use of biased agonists to the G protein of μ-opioid receptors has been suggested as a potential solution, although Oliceridine and PZM21 have previously failed to demonstrate benefits in clinical studies. An amplification-induced confusion in the process of comparing G protein and beta-arrestin pathways may account for previous biased agonist mis-identification. Here, we have devised a strategy to discover biased agonists with intrinsic efficacy. We computationally simulated 430,000 molecular dockings to the μ-opioid receptor to construct a compound library. Hits were then verified by experiment. Using the verified compounds, we performed simulations to build a second library with a common scaffold, and selected compounds which show biased features to μ and δ-opioid receptors through a cell-based assay. Three compounds (ID110460001, ID110460002, and ID110460003) with a dual biased agonistic effect for μ and δ-opioid receptors were identified. These candidates are full agonists for the μ-opioid receptor, and they show specific binding modes. Based on our findings, we expect our novel compound to act as a biased agonist than conventional drugs such as Oliceridine.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6079
Author(s):  
Yusuke Karasawa ◽  
Kanako Miyano ◽  
Hideaki Fujii ◽  
Takaaki Mizuguchi ◽  
Yui Kuroda ◽  
...  

Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Stephanie E Crilly ◽  
Wooree Ko ◽  
Zara Y Weinberg ◽  
Manojkumar A Puthenveedu

The prevailing model for the variety in drug responses is that they stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We show that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.


2021 ◽  
Vol 14 (677) ◽  
pp. eaav0320
Author(s):  
Tao Che ◽  
Hemlata Dwivedi-Agnihotri ◽  
Arun K. Shukla ◽  
Bryan L. Roth

The opioid crisis represents a major worldwide public health crisis that has accelerated the search for safer and more effective opioids. Over the past few years, the identification of biased opioid ligands capable of eliciting selective functional responses has provided an alternative avenue to develop novel therapeutics without the side effects of current opioid medications. However, whether biased agonism or other pharmacological properties, such as partial agonism (or low efficacy), account for the therapeutic benefits remains questionable. Here, we provide a summary of the current status of biased opioid ligands that target the μ- and κ-opioid receptors and highlight advances in preclinical and clinical trials of some of these ligands. We also discuss an example of structure-based biased ligand discovery at the μ-opioid receptor, an approach that could revolutionize drug discovery at opioid and other receptors. Last, we briefly discuss caveats and future directions for this important area of research.


1991 ◽  
Vol 69 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Bianca B. Ruzicka ◽  
Khem Jhamandas

Previous investigations have shown that the activation of δ-opioid receptors depresses the release of acetylcholine (ACh) in the rat caudate putamen. This finding raised the possibility that the release of ACh is similarly modulated in the globus pallidus, a region containing a distinct population of cholinergic neurons and enriched in enkephalinergic nerve terminals. In the present study the pallidal release of ACh was characterized and the effects of δ-opioid receptor activation on this release were examined. The results show that this release is stimulated by high K+ in a concentration- and Ca2+-dependent manner. D-Pen2,L-Pen5-enkephalin (0.1 – 10 μM), a selective δ-opioid receptor agonist, produced a dose-related inhibition of the 25 mM K+-evoked tritium release. The maximal inhibitory effect, representing a 34% decrease in the K+-induced tritium release, was observed at a concentration of 1 μM. This opioid effect was attenuated by the selective δ-opioid receptor antagonist, ICI 174864 (1 μM). These findings support the role of a δ-opioid receptor in the modulation of ACh release in the rat globus pallidus.Key words: globus pallidus, acetylcholine, enkephalin, release.


2021 ◽  
Author(s):  
Stephanie E. Crilly ◽  
Wooree Ko ◽  
Zara Y. Weinberg ◽  
Manojkumar A. Puthenveedu

AbstractThe prevailing model for the variety in drug responses is that they stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand can produce different GPCR active states based on the environment of receptors in cells is a fundamental unanswered question. Here we address this question using live cell imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neurons. We show that, although Golgi and surface pools of DOR regulated cAMP, the two pools engaged distinct conformational biosensors in response to the same ligand. Further, DOR recruited arrestin on the plasma membrane but not the Golgi. Our results suggest that the same agonist drives different conformations of a GPCR at different locations, allowing receptor coupling to distinct effectors at different locations.


2001 ◽  
Vol 276 (15) ◽  
pp. 12345-12355 ◽  
Author(s):  
Kirti Chaturvedi ◽  
Persis Bandari ◽  
Norihiro Chinen ◽  
Richard D. Howells

This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged δ and μ receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [35S]methionine metabolic labeling indicated that the turnover rate of δ receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional Giand Goproteins by pertussis toxin-attenuated down-regulation of the μ opioid receptor, while down-regulation of the δ opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on μ and δ opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced μ and δ receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state μ and δ opioid receptor levels. Immunoprecipitation of μ and δ opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors.


Sign in / Sign up

Export Citation Format

Share Document