scholarly journals A risk-based approach to solving the problem of airline schedule operational management

Author(s):  
Yulia L. Korotkova ◽  
◽  
Yury A. Mesentsev ◽  

The paper discusses the problem of optimal regulation of aircraft assignments for airline flights. Due to the fact that the activities of the airline are subject to changes caused by both external and internal environment, the planned schedule needs continuous management and control. In the event when the actual flight schedule deviates from the planned one, it is necessary to promptly make a decision on adjusting (restoring) the schedule and reassigning aircraft. Operational schedule management involves making adjustments to the current schedule from a depth of several hours to several days. The solution to the problem is to determine the unambiguous correspondence of flights and specific aircraft subject to maximizing the likelihood of meeting production targets and observing a number of restrictions. The task of managing airline schedules belongs to the class of scheduling optimization problems for parallel-sequential systems studied within the scheduling theory. It is NP-hard and requires the development of computationally efficient solution algorithms. However, the issue of choosing criteria for the optimization problem deserves special attention, since the correct choice plays an essential role in terms of assessing the effectiveness of decision-making. In the theory of decision-making, no general method for choosing the optimality criteria has been found. The definition of the target criterion depends on the expectations of the production. Within the framework of this paper, an original criterion is proposed for constructing an optimal solution to the discrete problem of managing aircraft assignments, the main idea of which is to find a balance between the duration of the schedule and the number of flights with a negative deviation from the planned schedule by assessing the level of punctuality violation risk. The paper gives a detailed concept of punctuality, describes an approach to assessing the level of risk, and also proposes an original formal formulation of the task of operational management of aircraft assignments based on the criterion of minimizing the risk of violation of flight punctuality.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1055
Author(s):  
Narueset Prasertsri ◽  
Satith Sangpradid

Khon Kaen District is in the central, north-east part of Thailand and is being developed to handle the country’s growth. Khon Kaen District is undertaking the project of building a light rail as a facility for the people. Consequently, one of the problems is ensuring adequate parking for people using the light rail service. In general, the symmetry concept naturally used in decision making to finding an optimal solution for decision and optimization problems. In this paper, multi-criteria decision analysis (MCDA) and multi-objective decision making (MODM) were used to solve the parking site selection problem, which made the decision easier. This paper proposed an analytic hierarchy process (AHP) technique, combined with the geographical information system (GIS), to evaluate the weight of the criteria used in the analysis and find potential parking solutions. Furthermore, this paper proposed the application of a linguistic technique with fuzzy TOPSIS methods to analyze the appropriateness of parking site selections from potential candidates to support use of the light rail. The results of the MCDA show that the most suitable parking lot location is along the light rail and closest to the business area. The results of the fuzzy TOPSIS method, both positive and negative ideal decisions, can help inform decision makers in selecting which candidate site is optimal for parking.


2013 ◽  
Vol 333-335 ◽  
pp. 1379-1383
Author(s):  
Yan Wu ◽  
Xiao Xiong Liu

In dynamic environments, it is difficult to track a changing optimal solution over time. Over the years, many approaches have been proposed to solve the problem with genetic algorithms. In this paper a new space-based immigrant scheme for genetic algorithms is proposed to solve dynamic optimization problems. In this scheme, the search space is divided into two subspaces using the elite of the previous generation and the range of variables. Then the immigrants are generated from both the subspaces and inserted into current population. The main idea of the approach is to increase the diversity more evenly and dispersed. Finally an experimental study on dynamic sphere function was carried out to compare the performance of several genetic algorithms. The experimental results show that the proposed algorithm is effective for the function with moving optimum and can adapt the dynamic environments rapidly.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Lipu Zhang ◽  
Yinghong Xu ◽  
Yousong Liu

This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.


Author(s):  
Ying Xiong ◽  
Singiresu S. Rao

Many engineering optimization problems can be considered as multistage decision-making problems. If the system involves uncertainty in the form of linguistic parameters and vague data, a fuzzy approach is to be used for its description. The solution of such problems can be accomplished through fuzzy dynamic programming. However, most of the existing fuzzy dynamic programming algorithms can not deal with mixed-discrete design variables in the optimization of mechanical systems containing fuzzy information. They often assumed that a fuzzy goal is imposed only on the final state for simplicity, the values of fuzzy goal and other parameters need to be predefined, and an optimal solution is obtained in the continuous design space only. To better reflect the nature of uncertainties present in real-life optimization problems, a mixed-discrete fuzzy dynamic programming (MDFDP) approach is proposed in this work for solving multistage decision-making problems in mixed-discrete design space with a fuzzy goal and a fuzzy state imposed on each stage. The feasibility and versatility of the proposed method are illustrated by considering the design of a four-bar truss. To the authors’ knowledge, this work represents the first fuzzy dynamic programming method reported in the literature for dealing with mixed-discrete optimization problems.


2018 ◽  
Vol 204 ◽  
pp. 02006
Author(s):  
Khusnul Novianingsih ◽  
Rieske Hadianti

The airline crew pairing problem is one of the optimization problems which classified as a NP-hard problem. Since the number of feasible pairings in flight schedules can be numerous, the exact methods will not efficient to solve the problem. We propose a heuristic method for solving crew pairing problems. Initially, we generate a feasible solution by maximizing the covered flights. Then, we improve the solution by constructing a procedure to avoid the local optimal solution. We test our method to an airline schedules. The computational results show that our method can give the optimal solution in short period of time.


2016 ◽  
Vol 4 (2) ◽  
pp. 69-85 ◽  
Author(s):  
Jonathan Gaudreault ◽  
Claude-Guy Quimper ◽  
Philippe Marier ◽  
Mathieu Bouchard ◽  
François Chéné ◽  
...  

Abstract Mixed-Initiative-Systems (MIS) are hybrid decision-making systems in which human and machine collaborate in order to produce a solution. This paper described an MIS adapted to business optimization problems. These problems can usually be solved in less than an hour as they show a linear structure. However, this delay is unacceptable for iterative and interactive decision-making contexts where users need to provide their input. Therefore, we propose a system providing the decision-makers with a convex hull of optimal solutions that minimize/maximize the variables of interest. The users can interactively modify the value of a variable and the system is able to recompute a new optimal solution in a few milliseconds. Four real-time reoptimization methods are described and evaluated. We also propose an improvement to this basic scheme in order to allow a user to explore near-optimal solutions as well. Examples showing real case of how we have exploited this framework within interactive decision support software are given. Highlights A Mixed Initiative System adapted to business optimization problems is presented. Real-time reoptimization methods are described and evaluated. The system is able to recompute a new optimal solution in a few milliseconds. Improvement to this basic scheme allow a user to explore near-optimal solutions. Examples showing real case of exploiting this framework are given.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Wenguang Yang ◽  
Yunjie Wu

Multiattribute decision-making (MADM) problem is difficult to assess because of the large number of attribute indices and the diversity of data distribution. Based on the understanding of data dispersion degree, a new grey TOPSIS method for MADM is studied. The main idea of this paper is to redefine the grey relational analysis through the dispersion of data distribution and redesign the TOPSIS by using the improved grey relational analysis. As a classical multiattribute decision analysis method, traditional TOPSIS does not consider the data distribution of the degree of dispersion and aggregation when it is compared with the optimal and worst alternative solutions. In view of the limitations of traditional TOPSIS, this paper has made two major improvements to TOPSIS. Firstly, the new grey relational analysis is applied to evaluate the grey positive relational degree between each alternative and the optimal solution and compute the grey negative relational degree between each alternative and the worst solution. Secondly, the weights of every attribute index about the optimal and worst solutions are put forward based upon the distance standard deviation and the average distance. Finally, the comprehensive grey TOPSIS is utilized to analyze the ranking of weapon selection problem. The numerical results verify the feasibility of the improved grey relational analysis and also highlight the practicability of the grey comprehensive TOPSIS.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 915 ◽  
Author(s):  
Vinogradova

Optimization problems are relevant to various areas of human activity. In different cases, the problems are solved by applying appropriate optimization methods. A range of optimization problems has resulted in a number of different methods and algorithms for reaching solutions. One of the problems deals with the decision-making area, which is an optimal option selected from several options of comparison. Multi-Attribute Decision-Making (MADM) methods are widely applied for making the optimal solution, selecting a single option or ranking choices from the most to the least appropriate. This paper is aimed at providing MADM methods as a component of mathematics-based optimization. The theoretical part of the paper presents evaluation criteria of methods as the objective functions. To illustrate the idea, some of the most frequently used methods in practice—Simple Additive Weighting (SAW), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Complex Proportional Assessment Method (COPRAS), Multi-Objective Optimization by Ratio Analysis (MOORA) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)—were chosen. These methods use a finite number of explicitly given alternatives. The research literature does not propose the best or most appropriate MADM method for dealing with a specific task. Thus, several techniques are frequently applied in parallel to make the right decision. Each method differs in the data processing, and therefore the results of MADM methods are obtained on different scales. The practical part of this paper demonstrates how to combine the results of several applied methods into a single value. This paper proposes a new approach for evaluating that involves merging the results of all applied MADM methods into a single value, taking into account the suitability of the methods for the task to be solved. Taken as a basis is the fact that if a method is more stable to a minor data change, the greater importance (weight) it has for the merged result. This paper proposes an algorithm for determining the stability of MADM methods by applying the statistical simulation method using a sequence of random numbers from the given distribution. This paper shows the different approaches to normalizing the results of MADM methods. For arranging negative values and making the scales of the results of the methods equal, Weitendorf’s linear normalization and classical and author-proposed transformation techniques have been illustrated in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4567
Author(s):  
Mohammad Dehghani ◽  
Pavel Trojovský

Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1456
Author(s):  
Stefka Fidanova ◽  
Krassimir Todorov Atanassov

Some of industrial and real life problems are difficult to be solved by traditional methods, because they need exponential number of calculations. As an example, we can mention decision-making problems. They can be defined as optimization problems. Ant Colony Optimization (ACO) is between the best methods, that solves combinatorial optimization problems. The method mimics behavior of the ants in the nature, when they look for a food. One of the algorithm parameters is called pheromone, and it is updated every iteration according quality of the achieved solutions. The intuitionistic fuzzy (propositional) logic was introduced as an extension of Zadeh’s fuzzy logic. In it, each proposition is estimated by two values: degree of validity and degree of non-validity. In this paper, we propose two variants of intuitionistic fuzzy pheromone updating. We apply our ideas on Multiple-Constraint Knapsack Problem (MKP) and compare achieved results with traditional ACO.


Sign in / Sign up

Export Citation Format

Share Document