anodic polarisation
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
pp. 1-27
Author(s):  
Carla Driessen-Ohlenforst ◽  
Michael Raupach

In the context of a joint research project, a system for monitoring, protection and strengthening of bridges by using a textile reinforced concrete interlayer has been developed which consists of two carbon layers with a spacing of 15 mm and a special mortar. This setup led to the idea to build up an electrical field between the carbon meshes, which suppresses the ingress of chlorides into the concrete. This paper focuses on the question which voltages and electrical field strengths are necessary to prevent critical chloride contents at the reinforcing steel. For this purpose, extensive laboratory tests have been performed, followed by a numerical simulation study. By applying an electrical field, the negatively charged chloride ions are forced to move to the upper carbon mesh that is polarized as an anode. It has been investigated whether the voltages to implement an electrochemical chloride barrier are smaller than they have to be for the common preventive cathodic protection. One advantage of this chloride barrier is that because of the lower current densities the anodic polarisation of the carbon meshes can be reduced. Therefore, different voltages, electrical field strengths, anode materials and anode arrangements were investigated.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 965
Author(s):  
Frank Simchen ◽  
Maximilian Sieber ◽  
Thomas Mehner ◽  
Thomas Lampke

Plasma electrolytic oxidation (PEO) is a method to obtain protective coatings on metallic light-weight construction materials. Here, the workpiece receives a strong anodic polarisation in a suitable aqueous electrolyte, which leads to the formation of a passive layer and a gaseous shell. Afterwards, plasma electrolytic discharges appear on the substrate surface and convert it into a ceramic layer. The properties of the passive layer are influenced by the selected substrate/electrolyte combination and are essential for the PEO process-initiation and characteristics. In this work, a new method for the systematic investigation of the substrate/electrolyte interactions during the pre-discharge stage is presented. The procedure is carried out by a polarisation experiment and allows for a quantitative characterisation of the passivation behavior, based on a small electrolyte volume. The method is used to investigate a literature-known electrical conduction mechanism on passive films formed on magnesium, by cross-comparison between different Mg and Al materials. In addition, the influence of phosphate, glycerol, and fluoride on the passivation behaviour of the Mg alloy AZ31 in an alkaline environment is considered and quantified. The results provide an explanatory approach for the positive influence of toxic fluorides within the electrolyte on the morphology of PEO layers on magnesium.


2018 ◽  
Vol 199 ◽  
pp. 11015
Author(s):  
Amir Asgharzadeh ◽  
Michael Raupach

Carbon textiles are used more and more as reinforcement in concrete structures. Due to their high durability the concrete covers can be extremely thin compared to traditional steel reinforced concrete, resulting in the possibility to build very thin elements with excellent performance. To improve the properties of the carbon textiles, the rovings are normally impregnated with different types of polymers. Additionally to the use as reinforcement, carbon textiles can also be used as anodes for cathodic protection. However, while first tests have shown, that impregnated carbon rovings are suitable to be used as CP-anodes, it is still not clear under which conditions the new types of anodes are stable or when they start to dissolve. This paper describes investigations on the influence of an anodic polarisation on the tensile strength of different types of impregnated carbon rovings.


2016 ◽  
Vol 61 (1) ◽  
pp. 249-252 ◽  
Author(s):  
J. Przondziono ◽  
E. Hadasik ◽  
W. Walke ◽  
J. Mendala

The study presents results of tests of impact of work hardening in cold drawing process, surface treatment and sterilisation on resistance to electrochemical corrosion of wires made of stainless steel X2CrNiMo 17-12-2 intended for cardiology. Potentiodynamic tests were performed on the ground of registered anodic polarisation curves in artificial plasma solution. Static uniaxial tension test made the ground for determination of strength characteristics of wires and the flow curve. Functions presenting the change of polarisation resistance according to strain applied in drawing process were selected. Test results show deterioration of corrosion properties of wires with work hardening. Surface modification of passivated surface caused increase of resistance of stainless steel wires to electrochemical corrosion, whereas sterilisation with pressurised water steam deteriorated that resistance.


2015 ◽  
Vol 182 ◽  
pp. 379-391 ◽  
Author(s):  
A. Egger ◽  
N. Schrödl ◽  
W. Sitte

La2NiO4+δ is characterised as an example for a potential anode material for high-temperature solid oxide electrolyser cells (SOECs). Short-term characterisation is performed from 700 °C to 850 °C between 0.01 and 1 bar oxygen partial pressure (pO2) on asymmetrical cells using Ce0.9Gd0.1O2−δ as the electrolyte. Long-term degradation studies over more than 3000 hours are conducted at 800 °C and 0.2 bar pO2 in dry and humid atmospheres with and without a Cr-source placed in close vicinity to the cell. The SOEC anode performance is investigated by current–voltage curves combined with impedance spectroscopy. Current densities of up to −410 mA cm−2 are applied in current–voltage measurements and during long-term degradation studies. A total increase in anode resistance by 350% is observed over the course of the degradation measurements in an increasingly harsh environment. Post-test analyses by SEM/EDX on a polished cross section of the cell show the presence of several contaminants in the electrode structure. However, chromium has not been identified by EDX even after prolonged exposure to Cr-sources in humid atmospheres, which is attributed to the anodic polarisation of the electrode. Electrode delamination appears to be the main factor for the strong loss in performance.


2014 ◽  
Vol 2 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Zhiming Shi ◽  
Jimmy Xueshan Jia ◽  
Andrej Atrens
Keyword(s):  

2014 ◽  
Vol 794-796 ◽  
pp. 193-198 ◽  
Author(s):  
David M. Carrick ◽  
Simon C. Hogg ◽  
Geoffrey D. Wilcox

This paper discusses two Al-Cu alloys for aerospace applications, one of which has an addition of between 1.6 and 2.0 wt.% of Li. The alloys are AA2024-T3 (Al-Cu) and AA2099-T8E77 (Al-Cu-Li). Microstructural analysis via Field Emission Gun Transmission Electron Microscope (FEGTEM) and Field Emission Gun Scanning Electron Microscope (FEGSEM) utilising Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Detector (EBSD) techniques have been used to characterise the two microstructures and phases contained within them. Anodic polarisation and immersion testing in a 3.5 wt.% NaCl solution have been carried out and a comparison of the corrosion mechanisms has been made. AA2024-T3 had a fine, equiaxed grain structure, whereas AA2099-T8E77 had a substantial amount of recrystallized grains. Finer grains were also observed on AA2099-T8E77, however, the vast majority were larger than the maximum detection limit of the EBSD technique. Intergranular and pitting corrosion were observed on both alloys following immersion testing, however, the intergranular corrosion (IGC) was more prominent on AA2099-T8E77. Anodic polarisation indicated that AA2024-T3 was more noble, highlighting that the Li-containing AA2099-T8E77 alloy was more susceptible to corrosion. The T1(Al2CuLi) phase within AA2099-T8E77 was seen to be highly active following immersion and anodic polarisation tests. The corrosion pits on AA2099-T8E77 were seen to propagate to a depth of ~ 80 to 100 μm, with a maximum of 126 μm recorded. For AA2024-T3 the maximum depth recorded was 77 μm and the average depth was between 60 and 70 μm.


2014 ◽  
Vol 607 ◽  
pp. 31-36 ◽  
Author(s):  
Joanna Przondziono ◽  
Eugeniusz Hadasik ◽  
Witold Walke ◽  
Janusz Szala ◽  
Jakub Wieczorek

The purpose of the study was the evaluation of the electrochemical corrosion resistance of extruded magnesium alloy AZ61 in solutions with concentration of 0.012 M NaCl. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves by means of potentiodynamic method. Immersion tests were performed in NaCl solution and time periods of 1-6 days. Scanning microscopy was used to obtain images of the alloy microstructure after immersion tests. Electrochemical impedance spectroscopy was used to evaluate phenomena that take place on the surface of the tested alloy. The results of all performed tests prove explicitly deterioration of corrosion properties of magnesium alloy AZ31 with the increase of molar concentration of NaCl solution. It was found that irrespective of molar concentration of NaCl solution, pitting corrosion can be detected on the surface of the tested alloy. Test results prove that it is necessary to apply protective layers on elements made of the tested alloy.


Sign in / Sign up

Export Citation Format

Share Document