scholarly journals Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution

2020 ◽  
Author(s):  
Deborah Harrus ◽  
Anne Harduin-Lepers ◽  
Tuomo Glumoff

ABSTRACTSialic acid residues found as terminal monosaccharides in various types of glycan chains in cell surface glycoproteins and glycolipids have been identified as important contributors of cell-cell interactions in normal vs. abnormal cellular behavior and are pivotal in diseases such as cancers. In vertebrates, sialic acids are attached to glycan chains by a conserved subset of sialyltransferases with different enzymatic and substrate specificities. ST6Gal I is a sialyltransferase using activated CMP-sialic acids as donor substrates to catalyze the formation of a α2,6-glycosidic bond between the sialic acid residue and the acceptor disaccharide LacNAc. Understanding sialyltransferases at the molecular and structural level shed light into the function. We present here two human ST6Gal I structures, which show for the first time the enzyme in the unliganded state and with the full donor substrate CMP-Neu5Ac bound. Comparison of these structures reveal flexibility of the catalytic loop, since in the unliganded structure Tyr354 adopts a conformation seen also as an alternate conformation in the substrate bound structure. CMP-Neu5Ac is bound with the side chain at C-5 of the sugar residue directed towards empty space at the surface of the protein. Furthermore, the exact binding mode of the sialic acid moiety of the substrate directly involves sialylmotifs L, S and III and positions the sialylmotif VS in the immediate vicinity.PROTEIN DATA BANK ACCESSION CODESAtomic coordinates and structure factors of the human wild-type unliganded and CMP-Neu5Ac bound ST6Gal I have been deposited with the PDB with accession codes 6QVS and 6QVT, respectively.

1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


Reproduction ◽  
2000 ◽  
pp. 111-120 ◽  
Author(s):  
JA Chapman ◽  
OW Wiebkin ◽  
WG Breed

The zona pellucida glycoconjugate content of several marsupial species was investigated using differential lectin histochemistry. Ovaries from fat-tailed dunnarts, a southern brown bandicoot, grey short-tailed opossums, brushtail possums, ringtail possums, koalas and eastern grey kangaroos were fixed, embedded in paraffin wax, sectioned and stained with ten fluorescein isothiocyanate-conjugated lectins. Sections were also incubated with either neuraminidase or saponified, respectively, before incubation with the lectins to identify saccharide residues masked by sialic acids or O-acetyl groups on sialic acids. The zonae pellucidae surrounding the oocytes of the marsupials demonstrated interspecific variation in glycoconjugate content, with mannose-containing glycoconjugates exhibiting the greatest variation. Some of the zona pellucida glycoconjugates of all species, except those of the opossums, were masked by sialic acid with an increase in fluorescence with lectins from Arachis hypogea (PNA), and Glycine max (SBA), after desialylation. The disaccharide beta-galactose(1-4)N-acetyl-D-glucosamine appeared to be conformationally masked by O-acetyl groups of sialic acids in the zonae pellucidae of all species, with an increase in fluorescence with the lectin from Erythrina cristagalli (ECA), after saponification. Similar intensity and localization of beta-(1-4)-N-acetyl-D-glucosamine, as shown by staining of the lectin from Triticum vulgaris (WGA), to the inner and outer regions of the zona pellucida, were found to those reported in eutherian species. WGA fluorescence became uniform throughout the zonae pellucidae after saponification, indicating differential O-acetylation of sialic acids on the internal compartment of the zonae pellucidae.


2021 ◽  
Author(s):  
Yixuan Xie ◽  
Siyu Chen ◽  
Qiongyu Li ◽  
Ying Sheng ◽  
Michael R Alvarez ◽  
...  

A cross-linking method is developed to elucidate the glycan-mediated interactions between membrane proteins through sialic acids. The method provides previously unknown extensive glycomic interactions on cell membranes. The vast majority...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akira Minami ◽  
Yuka Fujita ◽  
Jun Goto ◽  
Ayano Iuchi ◽  
Kosei Fujita ◽  
...  

AbstractReduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly. In the present study, we showed that a lower layer of the dermis and muscle showed relatively intense sialidase activity. The sialidase activity in the skin decreased with aging. Choline and geranate (CAGE), one of the ionic liquids, can deliver the sialidase subcutaneously while maintaining the enzymatic activity. The elastin level in the dermis was increased by applying sialidase from Arthrobacter ureafaciens (AUSA) with CAGE on the skin for 5 days in rats and senescence-accelerated mice prone 1 and 8. Sialidase activity in the dermis was considered to be mainly due to Neu2 based on the expression level of sialidase isozyme mRNA. Transdermal administration of Neu2 with CAGE also increased the level of elastin in the dermis. Therefore, not only Neu1 but also Neu2 would be involved in elastic fiber assembly. Transdermal administration of sialidase is expected to be useful for improvement of wrinkles and skin disorders due to the loss of elastic fibers.


2017 ◽  
Vol 8 (9) ◽  
pp. 6165-6170 ◽  
Author(s):  
A. Matsumoto ◽  
A. J. Stephenson-Brown ◽  
T. Khan ◽  
T. Miyazawa ◽  
H. Cabral ◽  
...  

A group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids are described, with strong interactions under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment.


2015 ◽  
Vol 11 ◽  
pp. 617-621 ◽  
Author(s):  
Chian-Hui Lai ◽  
Heung Sik Hahm ◽  
Chien-Fu Liang ◽  
Peter H Seeberger

A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.


2004 ◽  
Vol 78 (15) ◽  
pp. 8094-8101 ◽  
Author(s):  
Peter L. Delputte ◽  
Hans J. Nauwynck

ABSTRACT Recently, we showed that porcine sialoadhesin (pSn) mediates internalization of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) in alveolar macrophages (Vanderheijden et al., J. Virol. 77:8207-8215, 2003). In rodents and humans, sialoadhesin, or Siglec-1, has been described as a macrophage-restricted molecule and to specifically bind sialic acid moieties. In the current study, we investigated whether pSn is a sialic acid binding protein and, whether so, whether this property is important for its function as a PRRSV receptor. Using untreated and neuraminidase-treated sheep erythrocytes, we showed that pSn binds sialic acid. Furthermore, pSn-specific monoclonal antibody 41D3, which blocks PRRSV infection, inhibited this interaction. PRRSV attachment to and infection of porcine alveolar macrophages (PAM) were both shown to be dependent on the presence of sialic acid on the virus: neuraminidase treatment of virus but not of PAM blocked infection and reduced attachment. Enzymatic removal of all N-linked glycans on the virus with N-glycosidase F reduced PRRSV infection, while exclusive removal of nonsialylated N-linked glycans of the high-mannose type with endoglycosidase H had no significant effect. Free sialyllactose and sialic acid containing (neo)glycoproteins reduced infection, while lactose and (neo)glycoproteins devoid of sialic acids had no significant effect. Studies with linkage-specific neuraminidases and lectins indicated that α2-3- and α2-6-linked sialic acids on the virion are important for PRRSV infection of PAM. From these results, we conclude that pSn is a sialic acid binding lectin and that interactions between sialic acid on the PRRS virion and pSn are essential for PRRSV infection of PAM.


2021 ◽  
Vol 38 (3) ◽  
pp. 266-271
Author(s):  
Yosun MATER ◽  
Günnur DEMİRCAN

The importance of early cancer diagnosis has led to development of many different diagnostic methods. In this context, the studies investigating the presence and amount of sugar residues to use as indicators in the identification of cancer cell type have become prominent. In the present study, sialic acids found on the membrane surfaces of ER (+) MCF-7 and ER (-) MDA-MB-231 breast cancer cell lines were labeled using three-dimensional (3D) cell culture (Spheroid) model as the closest method to the patient sample, thus its natural environment, among the cell culture methods. These sugar units that play a role in regulation of important immune characteristics such as recognition, binding and metastasis were made visualizable by applying fluorescent-labeled lectins such as FITC-(Wheat Germ Agglutinin) specifically binding to sialic acid units (GlcNAc, Neu5Ac) including particularly ß-GlcNAc and FITC-(Maackia Amurensis-Lectin-1) specifically binding to Galß4GlcNAc type sialic acids. These glycan units were specifically labeled with FITC-(Maackia Amurensis-Lectin-1) and FITC- (Wheat Germ Agglutinin) and radiation intensities were analyzed relatively. The two different breast cancer cell cultures were compared with respect to change in the amounts of sialic acid residues containing α-2,3- and α-2,6 bonds using fluorescent-labeled lectins. In the present study, we have performed a precise, accurate and rapid determination of the sugar content in the different breast cancer cell surface lines by means of fluorescent-labeled lectins and carried out a relative comparison between the micrographs.


2021 ◽  
Author(s):  
Katerina Djambazova ◽  
Martin Dufresne ◽  
Lukasz Migas ◽  
Angela Kruse ◽  
Raf Van de Plas ◽  
...  

Gangliosides are classified as acidic glycosphingolipids, containing ceramide moieties and oligosaccharide chains with one or multiple sialic acid residue(s). The presence of multiple sialylation sites gives rise to highly diverse isomeric structures with distinct biological roles. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables the untargeted spatial analysis of gangliosides, among other biomolecules, directly from tissue sections. Integrating trapped ion mobility mass spectrometry (TIMS), a gas-phase separation technology, with MALDI IMS allows for the investi-gation of isomeric lipid structures in situ. Here we demonstrate the gas-phase separation of disialoganglioside isomers GD1a and GD1b that differ in the position of a sialic acid residue, in a standard mixture of both isomers, a total ganglioside extract, and directly from thin tissue sections. The unique spatial distributions of GD1a/b (d36:1) and GD1a/b (d38:1) were deter-mined from rat hippocampus, as well as in a spinal cord tissue section.


2021 ◽  
Author(s):  
Emmanuele Severi ◽  
Michelle Rudden ◽  
Andrew Bell ◽  
Tracy Palmer ◽  
Nathalie Juge ◽  
...  

AbstractLocated at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least 8 times during the evolution of bacteria, from within 4 of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria including Spirochaetes, Bacteroidetes, Planctomycetes, and Verrucomicrobia, many of which are species that have not been previously recognised to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. We also provide evidence for a possible function of a sialic acid transporter component in chemotaxis that is independent of transport. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonisation of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.


Sign in / Sign up

Export Citation Format

Share Document