subalpine lakes
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kim Vincent ◽  
Hannah Holland-Moritz ◽  
Adam J. Solon ◽  
Eli M. S. Gendron ◽  
Steven K. Schmidt

From the aboveground vegetation to the belowground microbes, terrestrial communities differ between the highly divergent alpine (above treeline) and subalpine (below treeline) ecosystems. Yet, much less is known about the partitioning of microbial communities between alpine and subalpine lakes. Our goal was to determine whether the composition of bacterioplankton communities of high-elevation mountain lakes differed across treeline, identify key players in driving the community composition, and identify potential environmental factors that may be driving differences. To do so, we compared bacterial community composition (using 16S rDNA sequencing) of alpine and subalpine lakes in the Southern Rocky Mountain ecoregion at two time points: once in the early summer and once in the late summer. In the early summer (July), shortly after peak runoff, bacterial communities of alpine lakes were distinct from subalpine lakes. Interestingly, by the end of the summer (approximately 5 weeks after the first visit in August), bacterial communities of alpine and subalpine lakes were no longer distinct. Several bacterial amplicon sequence variants (ASVs) were also identified as key players by significantly contributing to the community dissimilarity. The community divergence across treeline found in the early summer was correlated with several environmental factors, including dissolved organic carbon (DOC), pH, chlorophyll-a (chl-a), and total dissolved nitrogen (TDN). In this paper, we offer several potential scenarios driven by both biotic and abiotic factors that could lead to the observed patterns. While the mechanisms for these patterns are yet to be determined, the community dissimilarity in the early summer correlates with the timing of increased hydrologic connections with the terrestrial environment. Springtime snowmelt brings the flushing of mountain watersheds that connects terrestrial and aquatic ecosystems. This connectivity declines precipitously throughout the summer after snowmelt is complete. Regional climate change is predicted to bring alterations to precipitation and snowpack, which can modify the flushing of solutes, nutrients, and terrestrial microbes into lakes. Future preservation of the unique alpine lake ecosystem is dependent on a better understanding of ecosystem partitioning across treeline and careful consideration of terrestrial-aquatic connections in mountain watersheds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinxian Liu ◽  
Jiahe Su ◽  
Meiting Zhang ◽  
Zhengming Luo ◽  
Xiaoqi Li ◽  
...  

Bacterial communities have been described as early indicators of both regional and global climatic change and play a critical role in the global biogeochemical cycle. Exploring the mechanisms that determine the diversity patterns of bacterial communities and how they share different habitats along environmental gradients are, therefore, a central theme in microbial ecology research. We characterized the diversity patterns of bacterial communities in Pipahai Lake (PPH), Mayinghai Lake (MYH), and Gonghai Lake (GH), three subalpine natural lakes in Ningwu County, Shanxi, China, and analyzed the distribution of their shared and unique taxa (indicator species). Results showed that the species composition and structure of bacterial communities were significantly different among the three lakes. Both the structure of the entire bacterial community and the unique taxa were significantly influenced by the carbon content (TOC and IC) and space distance; however, the structure of the shared taxa was affected by conductivity (EC), pH, and salinity. The structure of the entire bacterial community and unique taxa were mainly affected by the same factors, suggesting that unique taxa may be important in maintaining the spatial distribution diversity of bacterial communities in subalpine natural freshwater lakes. Our results provide new insights into the diversity maintenance patterns of the bacterial communities in subalpine lakes, and suggest dispersal limitation on bacterial communities between adjacent lakes, even in a small local area. We revealed the importance of unique taxa in maintaining bacterial community structure, and our results are important in understanding how bacterial communities in subalpine lakes respond to environmental change in local habitats.


Author(s):  
J. F. Toro Herrera ◽  
D. Carrion ◽  
M. A. Brovelli

Abstract. Nowadays, the increasing pressure over water resources is reflecting on the water quality all over the globe. Not surprisingly, local, and regional governments are taking initiatives into tackling this issue. However, the management of water resources requires coordinated management by the stakeholders, especially in cross-border regions, to achieve efficient regulations. Then, the data-sharing for monitoring the water resources is fundamental for the stakeholder participation in the process of knowledge building. This work presents the design and implementation of a collaborative web platform aiming at enhancing these processes applied to share water quality parameters maps produced under the framework of the SIMILE (Integrated monitoring system for knowledge, protection and valorisation of the subalpine lakes and their ecosystems) project. The platform takes advantage of open-source infrastructure and standards. The solution provides two web-based applications devoted to the upload/management (customized GeoNode) of the data and its visualization (WebGIS). The scope of the collaborative platform is to improve the access to information for awareness-building on the water resources in the Insubric area.


Author(s):  
C. Gerosa ◽  
M. Bresciani ◽  
G. Luciani ◽  
C. A. Biraghi ◽  
D. Carrion ◽  
...  

Abstract. SIMILE is an INTERREG Italy-Switzerland project that aims to preserve water quality of the subalpine lakes Como, Lugano and Maggiore (Northern Italy), through an integrated innovative monitoring system. For this purpose, satellite images are processed to map and monitor Chlorophyll-a (CHL-a), Total Suspended Solids (TSM) and Lake Water Surface Temperature (LWST). This study combines these remotely sensed water quality parameters (WPQs) maps, produced for the SIMILE project during 2019–2020, to propose and discuss a zonation approach that can support the monitoring of the study lakes through the analysis of spatial and temporal dynamics of the selected parameters. The approach consists in performing a cluster analysis on a combined sample of WQPs maps, on a monthly basis, for each lake; then the different lake clusters are compared over time, through time series analysis of the WQPs patterns. Finally, the clusters patterns are aggregated over time to map the lakes’ areas that have experienced higher or lower WQPs values during 2019–2020. The results show a high spatial variability for the lakes under study, both during the different seasons and years; a North-South gradient has been identified for all WQPs pattern, requiring for further investigation.


2021 ◽  
Vol 80 (2) ◽  
Author(s):  
Rocco Tiberti ◽  
Rossana Caroni ◽  
Massimiliano Cannata ◽  
Andrea Lami ◽  
Dario Manca ◽  
...  

A high frequency monitoring (HFM) system for the deep subalpine lakes Maggiore, Lugano and Como is under development within the EU INTERREG project SIMILE. The HFM system is designed to i) describe often neglected but potentially relevant processes occurring on short time scale; ii) become a cost-effective source of environmental data; and iii) strengthen the coordinated management of water resources in the subalpine lake district. In this project framework, a first HFM station (LM1) consisting of a monitoring buoy was placed in Lake Maggiore. LM1 represents a pilot experience within the project, aimed at providing the practical know-how needed for the development of the whole HFM system. To increase replicability and transferability, LM1 was developed in-house, and conceived as a low-cost modular system. LM1 is presently equipped with solar panels, a weather station, and sensors for water temperature, pH, dissolved oxygen, conductivity, and chlorophyll-a. In this study, we describe the main features of LM1 (hardware and software) and the adopted Quality Assurance/Quality Control (QA/QC) procedures. To this end, we provide examples from a test period, i.e., the first 9-months of functioning of LM1. A description of the software selected as data management software for the HFM system (IstSOS) is also provided. Data gathered during the study period provided clear evidence that coupling HFM and discrete sampling for QA/QC controls is necessary to produce accurate data and to detect and correct errors, mainly because of sensor fouling and calibration drift. These results also provide essential information to develop further the HFM system and shared protocols adapted to the local environmental (i.e., large subalpine lakes) and technical (expertise availability) context. Next challenge is making HFM not only a source of previously unaffordable information, but also a cost-effective tool for environmental monitoring.


2021 ◽  
Vol 13 (12) ◽  
pp. 2381
Author(s):  
Milad Niroumand-Jadidi ◽  
Francesca Bovolo ◽  
Lorenzo Bruzzone ◽  
Peter Gege

Different methods are available for retrieving chlorophyll-a (Chl-a) in inland waters from optical imagery, but there is still a need for an inter-comparison among the products. Such analysis can provide insights into the method selection, integration of products, and algorithm development. This work aims at inter-comparison and consistency analyses among the Chl-a products derived from publicly available methods consisting of Case-2 Regional/Coast Colour (C2RCC), Water Color Simulator (WASI), and OC3 (3-band Ocean Color algorithm). C2RCC and WASI are physics-based processors enabling the retrieval of not only Chl-a but also total suspended matter (TSM) and colored dissolved organic matter (CDOM), whereas OC3 is a broadly used semi-empirical approach for Chl-a estimation. To pursue the inter-comparison analysis, we demonstrate the application of Sentinel-2 imagery in the context of multitemporal retrieval of constituents in some Italian lakes. The analysis is performed for different bio-optical conditions including subalpine lakes in Northern Italy (Garda, Idro, and Ledro) and a turbid lake in Central Italy (Lake Trasimeno). The Chl-a retrievals are assessed versus in situ matchups that indicate the better performance of WASI. Moreover, relative consistency analyses are performed among the products (Chl-a, TSM, and CDOM) derived from different methods. In the subalpine lakes, the results indicate a high consistency between C2RCC and WASI when aCDOM(440) < 0.5 m−1, whereas the retrieval of constituents, particularly Chl-a, is problematic based on C2RCC for high-CDOM cases. In the turbid Lake Trasimeno, the extreme neural network of C2RCC provided more consistent products with WASI than the normal network. OC3 overestimates the Chl-a concentration. The flexibility of WASI in the parametrization of inversion allows for the adaptation of the method for different optical conditions. The implementation of WASI requires more experience, and processing is time demanding for large lakes. This study elaborates on the pros and cons of each method, providing guidelines and criteria on their use.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Nicola Ghirardi ◽  
Giulia Luciani ◽  
...  

Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 434
Author(s):  
Paolo Pastorino ◽  
Marino Prearo ◽  
Serena Anselmi ◽  
Vasco Menconi ◽  
Marco Bertoli ◽  
...  

The monitoring of microplastics pollution in freshwater environments trails behind its practice in marine ecosystems. We evaluated the use of the invasive zebra mussel (Dreissena polymorpha) as a potential bioindicator of microplastic litter in freshwater lakes. Samples were collected from three sites (Lovere, Costa Volpino, Castro) at the northern end of Lake Iseo (one of the major subalpine lakes in north Italy) and compared for water physicochemical parameters, biometrical features of zebra mussels, and microplastics items/specimens (color, shape, size, and chemical composition). We hypothesized that since a wastewater treatment plant (WWTP) on the Oglio River discharges into this area of the lake, the microplastics in D.polymorpha could be measured and compared in samples from the three sites at different distances from the WWTP. There was no difference in the physicochemical water parameters and biometric features between the samples from the three sites, whereas there was a significant difference in items/specimen between the sites in decreasing order (mean ± standard deviation): Costa Volpino (0.23 ± 0.43) > Lovere (0.07 ± 0.25) > Castro (0.03 ± 0.18). The chi-square test showed a significant difference in shape, color, and chemical composition frequency in the samples from the three sites. The chemical composition of the microplastics was polyethylene terephthalate (45%), nylon (20%), polypropylene (20%), polyamide resin (10%), and polyvinyl chloride (5%). Our data show that the amount of microplastics the zebra mussel accumulated was greater the closer the sampling site to the WWTP. Our findings suggest that the zebra mussel may provide a useful tool to monitor microplastics pollution in lakes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Luciani ◽  
Mariano Bresciani ◽  
Carlo Andrea Biraghi ◽  
Nicola Ghirardi ◽  
Daniela Carrion ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Cerasino ◽  
Nico Salmaso

Cyanotoxins are a global concern in freshwaters and eutrophication and climate changes can have synergistic effects in exacerbating the problem. Deep Subalpine Lakes (DSL) are a group of lakes of huge economic and naturalistic importance in Italy. Together with eutrophication (occurred during 1960s and 1970s) and re-oligotrophication (from 1990 onward) these lake have been experiencing warming and increase of the water column stability. These changes have influenced the phytoplankton (comprised the cyanobacteria) community of the lakes. Four DSL lakes (Lakes Garda, Iseo, Como and Lugano) have been studied with the aim of comparing their toxic potential. For one of them (Lake Garda) an 8 years survey was conducted, allowing a long term trend analysis. Toxin analysis was conducted on a monthly basis by targeted LC-MS/MS. A screening for anatoxins, cylindrospermopsins, saxitoxins, microcystins (MCs) and nodularins was carried out. Among all the listed toxins, only one anatoxin and five MCs were detected in the lakes. In particular, the alkaloid Anatoxin-a (ATX) was found dominant Lakes Garda, Iseo and Como and absent in lake Lugano; the MC-[D-Asp3]RR was found as the most abundant MC in all four lakes. Four other minoritary MCs were also found. The two major toxins are produced by two different cyanobacteria (Tychonema bourrellyi and Planktothrix rubescens) which have however similar ecological traits. Peaks of these toxins occur in warmer months (typically between May and September) in the thermocline layer (around 20 m, in the considered lakes). In summer 2016, the highest concentrations of ATX and total microcystins (MCs) were registered in Lake Iseo (1100 and 430ngL-1, respectively), while in the other lakes values were approximately twice lower. In the lakes where it is present, ATX peak levels are much higher than MCs, thus highlighting the necessity of considering ATX in the procedures of risk assessment. The importance of ATX is expected to further grow in the future with respect to MCs, as demonstrated by the long term trend analysis carried out in Lake Garda that showed a clear decline for MCs from 2009 till 2016 and a relative constancy for ATX.


Sign in / Sign up

Export Citation Format

Share Document