scholarly journals A Dual Resonance Electromagnetic Vibration Energy Harvester for Wide Harvested Frequency Range with Enhanced Output Power

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7675
Author(s):  
Zhijie Feng ◽  
Han Peng ◽  
Yong Chen

A dual resonance vibration electromagnetic energy harvester (EMEH) is proposed in this paper to extend frequency range. Compared with the conventional dual resonance harvester, the proposed system realizes an enhanced “band-pass” harvesting characteristic by increasing the relative displacement between magnet and coil among two resonance frequencies with a significant improvement in the average harvested power. Furthermore, two resonant frequencies are decoupled in the proposed system, which leads to a more straightforward design. The proposed dual resonance EMEH is constructed with a tubular dual spring-mass structure. It is designed with a serpentine planar spring and the coil position is optimized for higher power density with an overall size of 53.9 cm3 for the dual resonance EMEH. It realizes an output power of 11 mW at the first resonant frequency of 58 Hz, 14.9 mW at the second resonant frequency of 74.5 Hz, and 0.52 mW at 65 Hz, which is in the middle of the two resonance frequencies. The frequency range of output power above 0.5 mW is from 55.8 Hz to 79.1 Hz. The maximum normalized power density (NPD) reaches up to 2.77 mW/(cm3·g2). Compared with a single resonance harvester design under the same topology and outer dimension at a resonant frequency of 74.5 Hz, the frequency range in the proposed EMEH achieves more than a 2× times extension. The proposed dual resonance EMEH also has more than 2 times wider frequency range than other state-of-art wideband EMEHs. Therefore, the proposed dual resonance EMEH is demonstrated in this paper for a high maximum NPD and higher NPD over a wide frequency range.

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 91 ◽  
Author(s):  
Sofiane Bouhedma ◽  
Yongchen Rao ◽  
Arwed Schütz ◽  
Chengdong Yuan ◽  
Siyang Hu ◽  
...  

In this paper, we present a macroscale multiresonant vibration-based energy harvester. The device features frequency tunability through magnetostatic actuation on the resonator. The magnetic tuning scheme uses external magnets on linear stages. The system-level model demonstrates autonomous adaptation of resonance frequency to the dominant ambient frequencies. The harvester is designed such that its two fundamental modes appear in the range of (50,100) Hz which is a typical frequency range for vibrations found in industrial applications. The dual-frequency characteristics of the proposed design together with the frequency agility result in an increased operative harvesting frequency range. In order to allow a time-efficient simulation of the model, a reduced order model has been derived from a finite element model. A tuning control algorithm based on maximum-voltage tracking has been implemented in the model. The device was characterized experimentally to deliver a power output of 500 µW at an excitation level of 0.5 g at the respected frequencies of 63.3 and 76.4 Hz. In a design optimization effort, an improved geometry has been derived. It yields more close resonance frequencies and optimized performance.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


2020 ◽  
Vol 87 (9) ◽  
pp. 575-585
Author(s):  
Suresh Kote ◽  
Shankar Krishnapillai ◽  
Sujatha Chandramohan

AbstractIn piezoelectric energy harvesting devices, the relative displacement between the two ends of the harvester beam decides the output power from the piezoelectric patch. A novel four bar mechanism with a helical spring is used as a dynamic magnifier to improve the relative displacement and thereby the output power from the harvester. This dynamic magnifier is placed between the base excitation location and the composite harvester beam to form two degrees of freedom (2DOF) piezoelectric energy harvester. Electromechanical coupled analytical equations for the voltage and output power are derived using a lumped electromechanical model. The model is developed assuming linear transverse vibrations of the harvester. A dynamic magnifier is fabricated for the required frequency range and the suitable dimensions of the harvester beam are estimated using commercially available software. Experiments are conducted for base excitation amplitude of 0.05 mm and the performance of the proposed 2DOF harvester is studied for the output voltage and power. The proposed 2DOF harvester has shown 110 % improvement in output power in first mode and 270 % improvement in second mode compared to the conventional single degree of freedom (SDOF) cantilevered harvester for given identical input conditions. The measured frequencies and output power are validated with analytical solutions and are found to be in good agreement. Further, the effect of mass ratio, stiffness ratio and base excitation amplitude on the output voltage and power is investigated using analytical expressions.


2018 ◽  
Vol 217 ◽  
pp. 02006
Author(s):  
M. Z. A. Rahim ◽  
M. N. H. Hamid ◽  
Z. N. M. Yusuf ◽  
S. N. M. Soid ◽  
M. R. Ibrahim

This paper presented a concept of single degree of freedom (SDOF) electromagnetic vibration energy harvester device. This technique enable system to operate at wideband frequency range, low frequency and has multi-resonance frequencies. Each mechanical system operates at difference frequency where each system is attached with electromagnetic transducer components. the device is developed based on the parameter factors of vibration transmissibility from external vibration sources into the device through mathematical modelling. A prototype was tested by using vibration exciter and normal human walking. the fabricated device had showed multi-resonant behavior at 4.26 and 8.34 Hz during test. From experiment results, they have showed capability to operate at wide bandwidth frequency from 1.9 until 18.5 Hz at a periodic excitation of 0.04 g. the highest amount of rms voltage that has been produced about 108 mV with a maximum 78 µW average power across the 150 Ω load resistance. So, it has proven the dual-moving mechanical concept with low damping value in system has increased the operating bandwidth frequency and also increased the amount of output voltage from device.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 772
Author(s):  
Xianming He ◽  
Dongxiao Li ◽  
Hong Zhou ◽  
Xindan Hui ◽  
Xiaojing Mu

The piezoelectric vibration energy harvester (PVEH) based on the variable cross-section cantilever beam (VCSCB) structure has the advantages of uniform axial strain distribution and high output power density, so it has become a research hotspot of the PVEH. However, its electromechanical model needs to be further studied. In this paper, the bidirectional coupled distributed parameter electromechanical model of the MEMS VCSCB based PVEH is constructed, analytically solved, and verified, which laid an important theoretical foundation for structural design and optimization, performance improvement, and output prediction of the PVEH. Based on the constructed model, the output performances of five kinds of VCSCB based PVEHs with different cross-sectional shapes were compared and analyzed. The results show that the PVEH with the concave quadratic beam shape has the best output due to the uniform surface stress distribution. Additionally, the influence of the main structural parameters of the MEMS trapezoidal cantilever beam (TCB) based PVEH on the output performance of the device is theoretically analyzed. Finally, a prototype of the Aluminum Nitride (AlN) TCB based PVEH is designed and developed. The peak open-circuit voltage and normalized power density of the device can reach 5.64 V and 742 μW/cm3/g2, which is in good agreement with the theoretical model value. The prototype has wide application prospects in the power supply of the wireless sensor network node such as the structural health monitoring system and the Internet of Things.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
S. D. Moss ◽  
L. A. Vandewater ◽  
S. C. Galea

This work reports on the modelling and experimental validation of a bi-axial vibration energy harvesting approach that uses a permanent-magnet/ball-bearing arrangement and a wire-coil transducer. The harvester’s behaviour is modelled using a forced Duffing oscillator, and the primary first order steady state resonant solutions are found using the homotopy analysis method (or HAM). Solutions found are shown to compare well with measured bearing displacements and harvested output power, and are used to predict the wideband frequency response of this type of vibration energy harvester. A prototype harvesting arrangement produced a maximum output power of 12.9 mW from a 12 Hz, 500 milli-g (or 4.9 m/s2) rms excitation.


Sign in / Sign up

Export Citation Format

Share Document