region usage
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 5 (8) ◽  
pp. 2101-2105
Author(s):  
Surbhi Sidana ◽  
Surendra Dasari ◽  
Taxiarchis V. Kourelis ◽  
Angela Dispenzieri ◽  
David L. Murray ◽  
...  

Abstract Patients with immunoglobulin M (IgM) light chain (AL) amyloidosis have a distinct clinical presentation compared with those with non-IgM amyloidosis. We hypothesized that differential immunoglobulin light-chain variable region (IGVL) gene usage may explain the differences in organ involvement, because IGVL usage correlates with organ tropism. IGVL usage was evaluated by mass spectrometry of amyloid deposits (IgM, n = 45; non-IgM, n = 391) and differed across the 2 groups. In the λ family, LV2-08 (13% vs 2%; P < .001) and LV2-14 (36% vs 10%; P < .001) usage was more common in IgM vs non-IgM amyloidosis, whereas LV1-44 (0% vs 10%; P = .02) and LV6-57 (2% vs 18%; P = .004) usage was less common. In the κ family, there was a trend toward higher KV4-01 (11% vs 4%; P = .06) usage in IgM amyloidosis. IGVL usage correlated with disease characteristics/organ tropism. LV2-14 (more common in IgM amyloidosis) has historically been associated with peripheral nerve involvement and lower light chain burden, which were more frequent in IgM amyloidosis. LV1-44 (less common in IgM), associated with cardiac involvement, was less frequent in IgM patients. LV6-57 (less common in IgM) is associated with t(11;14), which was less frequent in IgM patients. In conclusion, IGVL gene usage differs in patients with IgM vs non-IgM amyloidosis and may explain the distinct clinical presentation.


2015 ◽  
Author(s):  
Kaur Alasoo ◽  
Fernando Martinez Estrada ◽  
Christine Hale ◽  
Siamon Gordon ◽  
Fiona Powrie ◽  
...  

Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokine involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3′ untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3142-3142
Author(s):  
Oana M Mereuta ◽  
Surendra Dasari ◽  
Jason D Theis ◽  
Julie A Vrana ◽  
Karen L Grogg ◽  
...  

Abstract Background Immunoglobulin light chain-associated amyloidosis (AL) is caused by deposition of immunoglobulin light chain molecules with unique, clonotypic variable (V) regions. Detection and identification of the V region, however, has been challenging due heterogeneity inherent in V regions. We developed a new method for detecting IGKV and IGLV region fragments in AL deposits using protein mass spectrometry and novel bioinformatics approach. We report distinct IGKV and IGLV usage in localized versus systemic AL. Methods Shotgun protein mass spectrometry on amyloid plaques was performed as previously described (Blood. 2009; 114: 4957-9). Peptide tandem mass spectra (MS/MS) were searched against a composite sequence database containing SwissProt's human complete proteome augmented with 1764 IG V region sequences obtained from ImMunoGeneTics database and a Mayo Clinic internal database. Reversed sequences were appended to the database for estimating identification false discovery rates (FDRs). Peptide identifications were processed with Scaffold software. Confident protein identifications (probability > 0.9) with at least one unique peptide identifications and five MS/MS matches were considered. Detected variable gene family (if any) with most number of peptide and spectral matches is considered to be present in the deposit. The method was first validated in 8 cases of AL amyloidosis with known IGKV and IGLV region sequences and then applied on 1238 systemic and 393 localized AL cases. Differences between groups were measured by generating hypergeometric p-values. Results In all 8 AL cases with known IGKV and IGLV region usage, gene family identified in the AL deposit via proteomics matched the gene family inferred from bone marrow plasma cells by Sanger sequencing of IGLC genes. Armed with this method, we analyzed the amyloid proteomics data from 1238 patients with systemic AL amyloidosis and 393 patients with localized AL amyloidosis. The anatomical site distribution in systemic cohort was 296 GI tract, 364 heart, 225 kidney, 81 liver and 272 fat aspirate; Localized cohort has 78 bladder, 158 lung and 157 skin cases. Figure 1 shows the normalized frequency of the variable gene families detected between the systemic and localized AL amyloidosis. For AL-kappa, KV1 was more prevalent in systemic cases when compared to localized cases (p=7.2E-12) suggesting KV1 clones as a hallmark for systemic AL-kappa amyloidosis. KV3 was more frequently seen in localized AL-kappa cases when compared to systemic AL-kappa cases (p =2.8E-11). For AL-lambda, LV1 and LV2 gene families were more prevalent in localized cases when compared to systemic cases (p= 0.039 and 2.7E-05). LV6 was more prevalent in systemic AL-lambda cases (p=1.4E-07). We also detected a higher incidence of mixed AL/AH type in localized AL (18%) when compared to systemic AL (5%; Odds Ratio=4.2673, p<0.0001). We next turned to the organ specific IGKV and IGLV gene family usage patterns in patients with localized amyloidosis. For 147 localized AL-kappa cases, KV3 was most dominant in lung (64%) and KV1 was dominant in skin (38%). For 246 localized AL-lambda cases, LV2 was most prevalent in lung (34%) and LV3 was most prevalent in skin (36%). For bladder, both LV1 and LV2 had comparable prevalence (42% and 32%). For 361 systemic AL-kappa cases, KV1 consistently ranked at the top of gene families used in GI tract (55%), heart (71%), kidney (59%), liver (75%) and fat aspirate (50%). For 877 systemic AL-lambda cases, LV2 was predominant in GI tract (30%), LV3 in heart (35%) and LV6 in kidney (33%). The prevalence of LV1, LV2 and LV3 in liver is comparable (36%, 22% and 31%). LV6 and LV3 had comparable prevalence (22% and 24%) in AL-lambda fat aspirates. Conclusion The novel proteomics method detects IGLC V family usage in large cohorts of AL patients. It identifies unique profiles in systemic and localized cases, and in different organ sites. This information will be helpful in determining systemic versus localized nature of AL amyloidosis at diagnosis and to assess risk of specific end organ involvement. We found also a strong association between IGKV and IGLV gene usage and organ involvement. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 127 (2-4) ◽  
pp. 112-127 ◽  
Author(s):  
T.A. Castoe ◽  
W. Gu ◽  
A.P.J. de Koning ◽  
J.M. Daza ◽  
Z.J. Jiang ◽  
...  

1999 ◽  
Vol 67 (9) ◽  
pp. 4469-4476 ◽  
Author(s):  
Gabriel Nussbaum ◽  
Sharmila Anandasabapathy ◽  
Jean Mukherjee ◽  
Manxia Fan ◽  
Arturo Casadevall ◽  
...  

ABSTRACT The antibody response to Cryptococcus neoformanscapsular glucuronoxylomannan (GXM) in BALB/c mice frequently expresses the 2H1 idiotype (Id) and is restricted in variable gene usage. This study examined the immunogenicity of GXM-protein conjugates, V (variable)-region usage, and 2H1 Id expression in seven mouse strains: BALB/c, C57BL/6, A/J, C3H, NZB, NZW, and (NZB × NZW)F1 (NZB/W). All mouse strains responded to vaccination with GXM conjugated to tetanus toxoid (TT), the relative magnitude of the antibody response being BALB/c ∼ C3H > C57BL/6 ∼ NZB ∼ NZW ∼ NZB/W > A/J. Analysis of serum antibody responses to GXM with polyclonal and monoclonal antibodies to the 2H1 Id revealed significant inter- and intrastrain differences in idiotype expression. Thirteen monoclonal antibodies (MAbs) (two immunoglobulin M [IgM], three IgG3, one IgG1, three IgG2a, two IgG2b, and two IgA) to GXM were generated from one NZB/W mouse and one C3H/He mouse. The MAbs from the NZB/W mouse were all 2H1 Id positive (Id+) and structurally similar to those previously generated in BALB/c mice, including the usage of a VH from the 7183 family and Vκ5.1. Administration of both 2H1 Id+and Id− MAbs from NZB/W and C3H/H3 mice prolonged survival in a mouse model of cryptococcosis. Our results demonstrate (i) that V-region restriction as indicated by the 2H1 Id is a feature of both primary and secondary responses of several mouse strains; and (ii) that there is conservation of V-region usage and length of the third complementarity-determining region in antibodies from three mouse strains. The results suggest that V-region restriction is a result of antibody structural requirements necessary for binding an immunodominant antigen in GXM.


1999 ◽  
Vol 60 (9) ◽  
pp. 755-763 ◽  
Author(s):  
Antonella Prisco ◽  
Giovanna Bonomi ◽  
Federica Moschella ◽  
Maria Neve Ombra ◽  
Piergiuseppe De Berardinis ◽  
...  

Immunity ◽  
1997 ◽  
Vol 7 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Richard T. Carson ◽  
Kate M. Vignali ◽  
David L. Woodland ◽  
Dario A.A. Vignali

Sign in / Sign up

Export Citation Format

Share Document