aluminium alloy matrix
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 53 (4) ◽  
pp. 210412
Author(s):  
Priyadarsini Morampudi ◽  
Venkata Ramana V.S.N. ◽  
Koona Bhavani ◽  
Amrita M ◽  
V Srinivas

Aluminum matrix composites (AMCs) are crucial to the progress of composite application areas due to their remarkable mechanical properties. Their usage has expanded into different fields such as the aerospace, automobile, and defense industries. The present study used wrought Al alloy AA6061 as the matrix, while ilmenite (FeTiO3) particles were used as reinforcement at different weight percentages to prepare metal matrix composites. One of the most economical and simple casting routes among the several available fabrication techniques for the preparation of composites is the stir casting method, which was applied in the present investigation to prepare the AMCs. The machinability of the fabricated composites and the surface roughness property after machining were studied to understand the effect of speed and feed during machining. The results showed that an increase in speed decreased the cutting forces and the surface roughness. Meanwhile, an increase in surface roughness was observed with an increase in feed.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5092
Author(s):  
Rafał Kozera ◽  
Anna Boczkowska ◽  
Zuzanna D. Krawczyk ◽  
Paulina Kozera ◽  
Maciej Spychalski ◽  
...  

The main goal of this work was the evaluation of the interfacial strength of the carbon fibres/aluminium matrix interface dependently on the utilised composite fabrication method, namely high pressure die casting and gas pressure infiltration. In addition, the influence of a Ni-P coating on the C-fibres was investigated. The proposed measurements of the interfacial strength were carried out by means of the “push-out” method. The interfacial strength of the samples fabricated using the high-pressure infiltration method average between 19.03 MPa and 45.34 MPa.


2021 ◽  
Vol 2027 (1) ◽  
pp. 012010
Author(s):  
M. Ravichandran ◽  
V. Mohanavel ◽  
T Sathish ◽  
P. Ganeshan ◽  
S. Suresh Kumar ◽  
...  

Author(s):  
A. Włodarczyk-Fligier ◽  
M. Polok-Rubiniec ◽  
J. Konieczny

Purpose: The aim of this paper is to present a modern manufacturing method of production and compare the thermal, mechanical, properties of composite materials with aluminium alloy matrix reinforced by Al2O3 particles. Design/methodology/approach: The material for investigation was manufactured by the method of powder metallurgy (consolidation, pressing, hot concurrent extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1 (A) and ceramic particles Al2O3). The amount of the added powder was in the range of 5 mass.%, 10 mass.% and 15 mass.%. Findings: The received results concerning the enhancement of hardness, which show the possibility of obtaining the MMC composite materials with required microstructure, influencing the properties of the new elaborated composite materials components. Concerning the thermal properties, especially the linear thermal expansion coefficient was measured, as well as the dilatometric change of the sample length was analysed. Practical implications: Concerning practical implications it can be stated that the tested composite materials can be applied among others in the transportation industry, but it requires additional research. Originality/value: The received results show the possibility of obtaining new composite materials with controlled and required microstructure with possible practical implications.


2018 ◽  
Vol 928 ◽  
pp. 32-37 ◽  
Author(s):  
V. Umasankar ◽  
Thomas Shijo

Nano composites are finding increased focus and their influence on improving the matrix properties are very attractive. But the success is fully dependent on the uniform distribution and dispersion of nano reinforcements in the matrix. Manufacturing process was found to have greater role in distribution of the reinforcements. The liquid processing and solid processing like SPS and hot coining found to have different effect on the matrix due to the nature of reinforcements. Current study focussed on the microstructure study using Back scattered images and the microhardness with and without reinforcements. MWCNT was occupying the particle boundary. Hot coining was found to distribute MWCNT on the particle surface as well as on the particle boundary. Clustering was absent and resulted in improved hardness in comparison with casting as well as spark plasma sintering.


Sign in / Sign up

Export Citation Format

Share Document