scholarly journals LncRNA GATA6-AS inhibits cancer cell proliferation and promotes cancer cell apoptosis in cervical cancer by down-regulating miR-205

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoying Zhao ◽  
Huzhong Zheng ◽  
Jun Chen

Abstract Background Dysregulated endothelial cell growth is involved in many types of human cancer, including cervical cancer. LncRNA GATA6-AS was reported to regulate endothelial cell growth, suggesting it might involve in cervical cancer. Our study was carried out to explore the involvement of GATA6-AS in cervical squamous cell carcinoma (CSCC), a subtype of cervical cancer. Methods To explore the expression of GATA6-AS, RT-qPCR was performed to detect GATA6-AS in plasma of 65 CSCC patients and 58 healthy females. To detect the expression of GATA6-AS, total RNAs were extracted. Results We found that plasma GATA6-AS expression was down-regulated in CSCC patients than that in healthy females, and HPV infection did not significantly affect the plasma expression of GATA6-AS. Moreover, we found that plasma GATA6-AS showed diagnostic values for CSCC by performing ROC curve analysis. The expression of miR-205 in plasma was also found to be up-regulated in CSCC patients than that in healthy females and inversely correlated with the expression of GATA6-AS in CSCC patients. Furthermore, over-expression of miR-205 did not significantly affect the expression of GATA6-AS in CSCC cells, while over-expression of GATA6-AS down-regulated miR-205 expression. In addition, GATA6-AS over-expression inhibited CSCC cell proliferation and promoted CSCC cell apoptosis, while miR-205 over-expression played opposite roles and attenuated the effects of GATA6-AS over-expression on CSCC cells. Conclusion Taken together, these results suggest that GATA6-AS may inhibit cell proliferation and promote cell apoptosis in CSCC by down-regulating miR-205.

2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is the prevalent invasive gynecological cancer in the world. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Metapristone is a hormone related drug and widely used in endometrial cancer clinical therapeutics. However, the deep regulatory mechanism of metapristone is not clear. In this research, we aimed to figure out the specific molecular mechanism during the treatment of endometrial cancer with metapristone.Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. Moreover, the mice tumor model was used to confirm the function of metapristone and the regulating process by miR-492/Klf5/Nrf1 axis in vivo. The protein expression was measured by western blot. Cell proliferation and apoptosis was monitored using the MTT assay, cell colony formation assay and EdU assay.Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yuan Pan ◽  
Yuting Jiang ◽  
Yingli Cui ◽  
Jihong Zhu ◽  
Yang Yu

Background : Lactoferricin peptide (LP) has been reported to control cancer cell proliferation. NF‐κB interacting lncRNA (NKILA) is a tumor suppressor in several cancers. Objective: We aimed to explore the potential function of the truncated LP (TLP) in the prevention of cervical cancer cell proliferation. Methods: Bioinformatics analysis via PPA-Pred2 showed that 18-aa N-terminus of truncated lactoferricin peptide (TLP18, FKCRRWQWRMKKLGAPSI) shows higher affinity with nuclear factor kappaB (NF-κB) than LP. The effects of LP and TLP18 on cervical cancer cells SiHa and HeLa and the related mechanisms were explored by investigating NF‐κB and lncRNA-NKILA. Results : TLP18 shows an inhibitory rate up to 0.4-fold higher than LP on the growth of cervical cancer cells (P<0.05). NKILA siRNA promoted cell growth whether LP or TLP18 treatment (P<0.05). TLP18 treatment increases the level of lncRNA-NKILA and reduces the level of NF‐κB up to 0.2-fold and 0.6-fold higher than LP (P<0.05), respectively. NKILA siRNA increased the levels of NF‐κB, cleaved caspase-3, and BAX (P<0.05). TLP18 increased apoptotic cell rate up to 0.2-fold higher than LP, while NKILA siRNA inhibited cell apoptosis cell growth even LP or TLP18 treatment. Conclusion: Truncated Lactoferricin peptide controls cervical cancer cell proliferation via lncRNA-NKILA/NF‐κB feedback loop.


2013 ◽  
Vol 14 (5) ◽  
pp. 1000-1007 ◽  
Author(s):  
Amit Kalra ◽  
Nitin Jaggi ◽  
Tarun Ahuja ◽  
Kanishka Bansal ◽  
Shiv Prasad Sharma

ABSTRACT Hemangiomas are tumors identified by rapid endothelial cell proliferation in early infancy, followed by involution over time. All other abnormalities are malformations resulting from anomalous development of vascular plexuses. The malformations have a normal endothelial cell growth cycle that affects the veins, the capillaries or the lymphatics and they do not involute. Hemangiomas are the most common tumors of infancy and are characterized by a proliferating and involuting phase. They are seen more commonly in whites than in blacks, more in females than in males in a ratio of 3:1. How to cite this article Ahuja T, Jaggi N, Kalra A, Bansal K, Sharma SP. Hemangioma: Review of Literature. J Contemp Dent Pract 2013;14(5):1000-1007.


2020 ◽  
Author(s):  
Yun Liu ◽  
Yue Chang ◽  
Yixuan Cai

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Munekazu Yamakuchi ◽  
Marcella Ferlito ◽  
Charles J Lowenstein

MicroRNAs (miRNAs) are short non-coding RNAs which inhibit gene expression at the post-transcriptional level. MiRNAs affect a wide variety of cellular functions such as proliferation, differentiation, and apoptosis, but the role of miRNA in endothelial cells is not well understood. The silent information regulator 1 (SIRT1) is an NAD-dependent deacetylase that regulates not only life-span but also cell growth arrest or apoptosis in response to oxidative and genotoxic stress. SIRT1 suppresses apoptosis thresholds by deacetylating molecular targets such as p53, FOXO transcription factors, and Ku70. We hypothesized that miRNA-34a regulates endothelial cell growth and senescence. We discovered that human endothelial cells (HUVEC and HAEC) express miRNA-34a by microarray analysis. When we over-expressed miR-34a in HUVEC, we found that SIRT1 protein was decreased. In contrast, transfection of HUVEC with antagomirs to miR-34a decreased endogenous miR-34a and increased SIRT1 protein. We identified a miR-34a binding site in the 3′ untranslated region (3′UTR) of SIRT1 and showed miR-34a directly inhibits SIRT1 translation using a luciferase assay. Next we examined the effect of miR-34a upon cell growth and senescence. Over-expression of miR-34a decreased SIRT1 protein, increased acetylated p53, and increased expression of p21, a transcriptional target of p53. When we co-transfected HUVEC with miR-34a precursor and SIRT1 expression vector to rescue SIRT1 expression, acetylated p53 and p21 expression were decreased. Finally over-expression of miR-34a induced cell cycle arrest and senescence in HUVEC using FACS and SA-gal assay. Our data suggest that miR-34a regulates cell growth and senescence through a SIRT1 - p53 pathway.


Sign in / Sign up

Export Citation Format

Share Document