mineral crystallinity
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Furqan A. Shah

Abstract Various compositional parameters are derived using intensity ratios and integral area ratios of different spectral peaks and bands in the Raman spectrum of bone. The $$\nu $$ ν 1-, $$\nu $$ ν 2-,$$\nu $$ ν 3-, $$\nu $$ ν 4 PO43−, and $$\nu_{1} $$ ν 1 CO32− bands represent the inorganic phase while amide I, amide III, Proline, Hydroxyproline, Phenylalanine, δ(CH3), δ(CH2), and $$\nu $$ ν (C–H) represent the organic phase. Here, using high-resolution Raman spectroscopy, it is demonstrated that all PO43− bands of bone either partially overlap with or are positioned close to spectral contributions from the organic component. Assigned to the organic component, a shoulder at 393 cm−1 compromises accurate estimation of $$\nu $$ ν 2 PO43− integral area, i.e., phosphate/apatite content, with implications for apatite-to-collagen and carbonate-to-phosphate ratios. Another feature at 621 cm−1 may be inaccurately interpreted as $$\nu $$ ν 4 PO43− band broadening. In the 1020–1080 cm−1 range, the ~ 1047 cm−1$$\nu $$ ν 3 PO43− sub-component is obscured by the 1033 cm−1 Phenylalanine peak, while the ~ 1076 cm−1$$\nu $$ ν 3 PO43− sub-component is masked by the $$\nu $$ ν 1 CO32− band. With $$\nu $$ ν 1 PO43− peak broadening, $$\nu $$ ν 2 PO43− integral area increases exponentially and individual peaks comprising the $$\nu $$ ν 4 PO43− band merge together. Therefore, $$\nu $$ ν 2 PO43− and $$\nu $$ ν 4 PO43− band profiles are sensitive to changes in mineral crystallinity.


Clay Minerals ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Anna C. Schomberg ◽  
Klaus Wemmer ◽  
Laurence N. Warr ◽  
Georg H. Grathoff

AbstractClay mineral ‘Crystallinity Index Standards’ (CIS) composed of Palaeozoic mudrocks from southwest England were investigated systematically in five sub-fractions per sample for the first time. X-ray diffraction was used to determine mineral assemblages, calibrated 001 illite full-width-at-half-maximum (FWHM) values and illite polytype compositions, in addition to K–Ar isotopic analyses of all fine fractions. The FWHM results of the <2 µm fraction are consistent with previous studies and reflect the range of diagenetic to epizonal grades covered by the sample set SW1 to SW7 (~0.61–0.26°2θ). Diagenetic and lower anchizone samples also show significant broadening of 001 illite reflections in the finer fractions and contain mixtures of authigenic 1M + 1Md illite and detrital 2M1 white mica polytypes suitable for illite age analysis. The estimated end-member ages of the Bude (SW1-1992) and younger Crackington (SW3-2000) mudstones yield detrital ages of Late Cambrian to Middle Ordovician (493–457 Ma) and a broad range of 1M + 1Md illite ages between Middle Permian and Early Jurassic (271–190 Ma). The detrital age of the stratigraphically older Crackington Formation mudrock (SW2-1992) is Late Devonian (384–364 Ma) with 1M + 1Md illite ages between Late Triassic and Early Jurassic (219–176 Ma). The origin of Mesozoic 1M + 1Md illite ages may represent neocrystallized illite associated with Mesozoic hydrothermal events or similar events that thermally reset older authigenic illite with partial loss of radiogenic argon and no renewed crystal growth. In contrast, upper anchizonal and epizonal Devonian slates (SW3-2012, SW4-1992, SW6-1992 and SW7-2012) contain only the 2M1 polytype, with K–Ar ages younger than the stratigraphic age. The three finest fractions of SW4-1992 yield consistent Late Carboniferous ages (331–304 ± 7 Ma) that are considered to date the neocrystallized 2M1 mica. Most fractions of epizonal slate (SW6-1992, SW7-2012) yield Early Permian ages (293.6–273 Ma) corresponding to published cooling ages of the Tintagel High-Strain Zone and the intrusion of the Bodmin granite (291.4 ± 0.8 Ma). These first K–Ar age constraints for the fine fractions of the CIS should provide useful reference values for testing analytical procedures of illite age analysis.


2019 ◽  
Vol 25 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Furqan A. Shah

AbstractThrough a correlative analytical approach encompassing backscattered electron scanning electron microscopy (BSE-SEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy, the composition of the mineralized biofilm around a dental implant, retrieved due to peri-implantitis, was investigated. The mineralized biofilm contains two morphologically distinct regions: (i) bacteria-containing zones (Bact+), characterized by aggregations of unmineralized and mineralized bacteria, and intermicrobial mineralization, and (ii) bacteria-free zones (Bact−), comprised mainly of randomly oriented mineral platelets. Intramicrobial mineralization, within Bact+, appears as smooth, solid mineral deposits resembling the morphologies of dental plaque bacteria. Bact− is associated with micrometer-sized Mg-rich mineral nodules. The Ca/P ratio of Bact+ is higher than Bact−. The inorganic phase of Bact+ is carbonated apatite (CHAp), while that of Bact− is predominantly octacalcium phosphate (OCP) and whitlockite (WL) inclusions. Compared with native bone, the inorganic phase of Bact+ (i.e., CHAp) exhibits higher mineral crystallinity, lower carbonate content, and lower Ca/P, C/Ca, Mg/Ca, and Mg/P ratios. The various CaPs found within the mineralized dental biofilm (CHAp, OCP, and WL) are related to the local presence/absence of bacteria. In combination with BSE-SEM and EDX, micro-Raman spectroscopy is a valuable analytical tool for nondestructive investigation of mineralized dental biofilm composition and development.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 579-602 ◽  
Author(s):  
Tatiana Maison ◽  
Sébastien Potel ◽  
Pierre Malié ◽  
Rafael Ferreiro Mählmann ◽  
Frank Chanier ◽  
...  

ABSTRACTClay minerals and organic matter occur frequently in fault zones. Their structural characteristics and their textural evolution are driven by several formation processes: (1) reaction by metasomatism from circulating fluids; (2)in situevolution by diagenesis; and (3) neoformation due to deformation catalysis. Clay-mineral chemistry and precipitated solid organic matter may be used as indicators of fluid circulation in fault zones and to determine the maximum temperatures in these zones. In the present study, clay-mineral and organic-matter analyses of two major fault zones – the Adams-Tinui and Whakataki faults, Wairarapa, North Island, New Zealand – were investigated. The two faults analysed correspond to the soles of large imbricated thrust sheets formed during the onset of subduction beneath the North Island of New Zealand. The mineralogy of both fault zones is composed mainly of quartz, feldspars, calcite, chabazite and clay minerals such as illite-muscovite, kaolinite, chlorite and mixed-layer minerals such as chlorite-smectite and illite-smectite. The diagenesis and very-low-grade metamorphism of the sedimentary rock is determined by gradual changes of clay mineral ‘crystallinity’ (illite, chlorite, kaolinite), the use of a chlorite geothermometer and the reflectance of organic matter. It is concluded here that: (1) the established thermal grade is diagenesis; (2) tectonic strains affect the clay mineral ‘crystallinity’ in the fault zone; (3) there is a strong correlation between temperature determined by chlorite geothermometry and organic-matter reflectance; and (4) the duration and depth of burial as well as the pore-fluid chemistry are important factors affecting clay-mineral formation.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 339-350 ◽  
Author(s):  
Laurence N. Warr

ABSTRACTA new set of clay mineral ‘Crystallinity’ Index Standards (CIS) is available for improved calibration of the half-peak-width values of the X-ray diffraction 001 illite reflection (the Kübler index) and the 002 chlorite reflection (the Árkai index), two widely used indices for determining the state of prograde diagenesis and low-temperature metamorphism. Calibration using mudrock standards removes the numerical differences between laboratories caused by variations in sample preparation, machine settings and measurement methods, thus avoiding erroneous grade determinations. The number of standards available has been increased to nine. These can be used to obtain Kübler index values for each CIS sample and Árkai index values for upper anchizonal and epizonal samples. The diagenetic and lower anchizonal mudrocks are not suitable for Árkai index measurements due to the absence of chlorite or overlap by the 001 kaolinite reflection. Applying the new Kübler-equivalent upper and lower boundary limits of the anchizone placed at 0.32°2θ and 0.52°2θ, respectively (Warr & Ferreiro Mählmann, 2015), the nine standards from the Palaeozoic mudrocks of southwest England now comprise two diagenetic, two lower anchizonal, three upper anchizonal and two epizonal grade samples. These range from weakly cleaved mudstones to strongly foliated slates.


2018 ◽  
Vol 72 (11) ◽  
pp. 1581-1593 ◽  
Author(s):  
William Querido ◽  
Ramyasri Ailavajhala ◽  
Mugdha Padalkar ◽  
Nancy Pleshko

Bone mineral crystallinity is an important factor determining bone quality and strength. The gold standard method to quantify crystallinity is X-ray diffraction (XRD), but vibrational spectroscopic methods present powerful alternatives to evaluate a greater variety of sample types. We describe original approaches by which transmission Fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and Raman spectroscopy can be confidently used to quantify bone mineral crystallinity. We analyzed a range of biological and synthetic apatite nanocrystals (10–25 nm) and found strong correlations between different spectral factors and the XRD determination of crystallinity. We highlight striking differences between FT-IR spectra obtained by transmission and ATR. In particular, we show for the first time the absence of the 1030 cm−1 crystalline apatite peak in ATR FT-IR spectra, which excludes its use for analyzing crystallinity using the traditional 1030/1020 cm−1 ratio. The ν4PO4 splitting ratio was also not adequate to evaluate crystallinity using ATR FT-IR. However, we established original approaches by which ATR FT-IR can be used to determine apatite crystallinity, such as the 1095/1115 and 960/1115 cm−1 peak ratios in the second derivative spectra. Moreover, we found a simple unified approach that can be applied for all three vibrational spectroscopy modalities: evaluation of the ν1PO4 peak position. Our results allow the recommendation of the most reliable analytical methods to estimate bone mineral crystallinity by vibrational spectroscopy, which can be readily implemented in many biomineralization, archeological and orthopedic studies. In particular, we present a step forward in advancing the use of the increasingly utilized ATR FT-IR modality for mineral research.


Sign in / Sign up

Export Citation Format

Share Document