scholarly journals A 15-Year Analysis of Surface Ozone Pollution in the Context of Hot Spells Episodes over Poland

2016 ◽  
Vol 64 (5) ◽  
pp. 1875-1902 ◽  
Author(s):  
Joanna Struzewska ◽  
Maciej Jefimow
2021 ◽  
Author(s):  
Lily Gouldsbrough ◽  
Ryan Hossaini ◽  
Emma Eastoe ◽  
Paul J. Young

<p>Warm summer temperatures provide ideal conditions for the occurrence of extreme ground level ozone pollution episodes. Given the well-established negative impacts of ozone on human and plant health, understanding and attributing these extreme events is of importance to the scientific and wider community, particularly as heatwaves may become more frequent due to climate change. Extreme Value Analysis provides a powerful and flexible framework in which to statistically model unusually large observed values of ozone extracted from historical data. Here, a temperature dependent Peaks-Over-Threshold method based upon the Generalised Pareto Distribution is used to carry out a regional comparison of extreme ozone pollution episodes within the UK. Our analysis uses surface ozone observations from the UK’s extensive Automatic Urban and Rural Network. The statistical model was used to quantify the frequency and magnitude of extreme ozone events, including a probabilistic assessment of exceeding UK public health thresholds, conditional on temperature. Return levels are provided for each monitoring site demonstrating the expected future projections of extreme ozone pollution events across the UK. We find that across UK rural background sites, return periods for a daily maximum 8-hr ozone level of 100 ug/m3 (a 'moderate' level of air pollution in the UK's Air Quality Index) range from 32-147 days, based on analysis of the data in the decade 2010-2019. Similarly, for urban background sites the range is 36-869 days. An analysis of the spatio temporal variability in UK ozone extremes, along with their temperature dependence, will be presented.</p>


2018 ◽  
Author(s):  
Jinhui Gao ◽  
Bin Zhu ◽  
Hui Xiao ◽  
Hanqing Kang ◽  
Chen Pan

Abstract. As an important solar-radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, by influencing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and processes analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone. The absorbing effect of BC heats the air above the BL and suppresses BL development, which eventually leads to changes in the contributions of ozone through chemical and physical processes (photochemistry, vertical mixing, and advection). Different from previous offline model studies, BL suppression leads large amounts of ozone precursors being confined below the BL which offsetting the influence from the reduction of photolysis rate, thus enhancing ozone photochemical formation before noon. Furthermore, the changes in physical process show a more significant influence on surface ozone. The weakened turbulence entrains much less ozone from the overlying ozone-rich air down to surface. As a result, the net contribution of ozone from physical and chemical processes leads to surface ozone reduction before noon. The maximum reduction reaches to 16.4 ppb at 12:00. In the afternoon, the changes in chemical process are small which influence inconspicuously to surface ozone. However, physical process still influences the surface ozone significantly. Due to the delayed development of the BL, less vertically mixed BL continues to show an obvious ozone gradient near the top of the BL. Therefore, more ozone aloft can be entrained down to the surface, offsetting the surface ozone reduction. Comparing all the changes in the contributions of processes, the change in the contribution of vertical mixing plays a more important role in impacting surface ozone. Our results show the great impacts of BC-BL interactions on surface ozone. And more attention should be paid on the mechanism of aerosol-BL interactions when we deal with the ozone pollution control in China.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2020 ◽  
Vol 20 (19) ◽  
pp. 11423-11433
Author(s):  
Ke Li ◽  
Daniel J. Jacob ◽  
Lu Shen ◽  
Xiao Lu ◽  
Isabelle De Smedt ◽  
...  

Abstract. Surface ozone data from the Chinese Ministry of Ecology and Environment (MEE) network show sustained increases across the country over the 2013–2019 period. Despite Phase 2 of the Clean Air Action Plan targeting ozone pollution, ozone was higher in 2018–2019 than in previous years. The mean summer 2013–2019 trend in maximum 8 h average (MDA8) ozone was 1.9 ppb a−1 (p<0.01) across China and 3.3 ppb a−1 (p<0.01) over the North China Plain (NCP). Fitting ozone to meteorological variables with a multiple linear regression model shows that meteorology played a significant but not dominant role in the 2013–2019 ozone trend, contributing 0.70 ppb a−1 (p<0.01) across China and 1.4 ppb a−1 (p=0.02) over the NCP. Rising June–July temperatures over the NCP were the main meteorological driver, particularly in recent years (2017–2019), and were associated with increased foehn winds. NCP data for 2017–2019 show a 15 % decrease in fine particulate matter (PM2.5) that may be driving the continued anthropogenic increase in ozone, as well as unmitigated emissions of volatile organic compounds (VOCs). VOC emission reductions, as targeted by Phase 2 of the Chinese Clean Air Action Plan, are needed to reverse the increase in ozone.


2011 ◽  
Vol 11 (6) ◽  
pp. 17337-17373 ◽  
Author(s):  
J. Xu ◽  
J. Z. Ma ◽  
X. L. Zhang ◽  
X. B. Xu ◽  
X. F. Xu ◽  
...  

Abstract. Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai (FT) and Baolian (BL)), an upwind suburban site (Shunyi (SY)) and a downwind rural site (Shangdianzi (SDZ)) during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to and slightly lower than it was at other sites. The daily-averaged ozone concentration at SDZ was much higher than at other sites due to weak titration. Ranking by OH loss rate coefficient (LOH), alkenes played a dominant role in total NMHCs reactivity at both urban and rural sites during the experiment, accounting for 48.6 % and 52.1 % of total LOH, respectively. The NMHCs data were also used to estimate the ozone potential formation (OFP) in Beijing. The leading contributors to ozone formation were aromatics at both urban and rural sites during the experiment, which accounts for 55.5 % and 49.4 % of total OFP, respectively. The ozone peak values are found to lag behind one site after another along the route of prevailing wind from SW to NE. Intersection analyses of trace gases reveal that polluted air masses arriving at SDZ were more aged with both higher O3 and Ox concentrations than those at BL. The results indicate that urban plume can transport not only O3 but its precursors, the latter leading more photochemical O3 production when being mixed with background atmosphere in the downwind rural area.


2012 ◽  
Vol 12 (4) ◽  
pp. 9161-9194 ◽  
Author(s):  
L. Ran ◽  
C. S. Zhao ◽  
W. Y. Xu ◽  
M. Han ◽  
X. Q. Lu ◽  
...  

Abstract. Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs). Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.


2008 ◽  
Vol 8 (19) ◽  
pp. 5889-5898 ◽  
Author(s):  
W. Lin ◽  
X. Xu ◽  
X. Zhang ◽  
J. Tang

Abstract. Regional ozone pollution has become one of the top environmental concerns in China, especially in those economically vibrant and densely populated regions, such as North China region including Beijing. To address this issue, surface ozone and ancillary data over the period 2004–2006 from the Shangdianzi Regional Background Station in north China were analyzed. Due to the suitable location and valley topography of the site, transport of pollutants from the North China Plain was easily observed and quantified according to surface wind directions. Regional (polluted) and background (clean) ozone concentrations were obtained by detailed statistic analysis. Contribution of pollutants from North China Plain to surface ozone at SDZ was estimated by comparing ozone concentrations observed under SW wind conditions and that under NE wind conditions. The average daily accumulated ozone contribution was estimated to be 240 ppb·hr. The average regional contributions to surface ozone at SDZ from the North China Plain were 21.8 ppb for the whole year, and 19.2, 28.9, 25.0, and 10.0 ppb for spring, summer, autumn, and winter, respectively. The strong ozone contribution in summer led to disappearance of the spring ozone maximum phenomenon at SDZ under winds other than from the NNW to E sectors. The emissions of nitrogen oxide in the North China plain cause a decrease in ozone concentrations in winter.


2021 ◽  
Author(s):  
Yabin Da ◽  
Yangyang Xu ◽  
Bruce McCarl

&lt;p&gt;Surface ozone pollution has been proven to impose significant damages on crops. However, the quantification of the damages was extensively derived from chamber experiments, which is not representative of actual results in farm fields due to the limitations of spatial scale, time window, etc. In this work, we attempt to empirically fill this gap using county-level data in the United States from 1980 to 2015. We explore ozone impacts on corn, soybeans, spring wheat, winter wheat, barley, cotton, peanuts, rice, sorghum, and sunflower. We also incorporate a variety of climate variables to investigate potential ozone-climate interactions. More importantly, we shed light on future yield consequences of ozone and climate change individually and jointly under a moderate warming scenario. Our findings suggest significant negative impacts of ozone exposure for eight of the ten crops we examined, excepting barley and winter wheat, which contradicts experimental results. The average annual damages were estimated at $6.03 billion (in 2015 U.S. dollar) from 1980 to 2015. We also find rising temperatures tend to worsen ozone damages while water supply would mitigate that. Finally, elevated ozone driven by future climate change would cause much smaller damages than the direct effects of climate change itself.&lt;/p&gt;


2020 ◽  
Vol 20 (1) ◽  
pp. 203-222 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Lei Shu ◽  
Tijian Wang ◽  
Huiling Yuan

Abstract. Ozone pollution in China is influenced by meteorological processes on multiple scales. Using regression analysis and weather classification, we statistically assess the impacts of local and synoptic meteorology on daily variability in surface ozone in eastern China in summer during 2013–2018. In this period, summertime surface ozone in eastern China (20–42∘ N, 110–130∘ E) is among the highest in the world, with regional means of 73.1 and 114.7 µg m−3, respectively, in daily mean and daily maximum 8 h average. Through developing a multiple linear regression (MLR) model driven by local and synoptic weather factors, we establish a quantitative linkage between the daily mean ozone concentrations and meteorology in the study region. The meteorology described by the MLR can explain ∼43 % of the daily variability in summertime surface ozone across eastern China. Among local meteorological factors, relative humidity is the most influential variable in the center and south of eastern China, including the Yangtze River Delta and the Pearl River Delta regions, while temperature is the most influential variable in the north, covering the Beijing–Tianjin–Hebei region. To further examine the synoptic influence of weather conditions explicitly, six predominant synoptic weather patterns (SWPs) over eastern China in summer are objectively identified using the self-organizing map clustering technique. The six SWPs are formed under the integral influence of the East Asian summer monsoon, the western Pacific subtropical high, the Meiyu front, and the typhoon activities. On average, regionally, two SWPs bring about positive ozone anomalies (1.1 µg m−3 or 1.7 % and 2.7 µg m−3 or 4.6 %), when eastern China is under a weak cyclone system or under the prevailing southerly wind. The impact of SWPs on the daily variability in surface ozone varies largely within eastern China. The maximum impact can reach ±8 µg m−3 or ±16 % of the daily mean in some areas. A combination of the regression and the clustering approaches suggests a strong performance of the MLR in predicting the sensitivity of surface ozone in eastern China to the variation of synoptic weather. Our assessment highlights the importance of meteorology in modulating ozone pollution over China.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 760 ◽  
Author(s):  
Wanyi Qiu ◽  
Shule Li ◽  
Yuhan Liu ◽  
Keding Lu

Due to the development of industrialization and urbanization, secondary pollution is becoming increasingly serious in the Yangtze River Delta. Volatile organic compounds (VOCs) are key precursors of the near-surface ozone, secondary organic aerosol (SOA), and other secondary pollutants. In this study, we chose a serious ozone pollution period (01 May–31 July 2017) in Jinshan, which is a petrochemical and industrial area in Shanghai. We explored the VOCs distribution characteristics and contribution to secondary pollutants via constructing a regional network based on wind patterns. We determined that dense pollutants were accumulated at adjacent sites under local circulation (LC), and pollution from petrochemical discharge was more serious than industry for all sites under southeast (SE) wind. We also found that cyclopentane, o-xylene, m/p-xylene, 1-3-butadiene, and 1-hexene were priority-controlled species as they were most vital to form secondary pollutants. This study proves that regional network analysis can be successfully applied to explore pollution characteristics and regional secondary pollutants formation.


Sign in / Sign up

Export Citation Format

Share Document