The influence of ground-relative flow and friction on near-surface storm-relative helicity

Author(s):  
Matthew D. Flournoy ◽  
Erik N. Rasmussen

AbstractRecent studies have highlighted the importance of near-ground storm-relative helicity (SRH) in supercell and tornado processes and how surface friction can play a role. In this study, we use an analytical approach to examine how uniform changes to the ground-relative wind profile above the near-ground layer influence SRH within the near-ground layer. We show how the ground-relative influence of surface friction alters the near-ground shear profile. For idealized semicircular and straight shear profiles, increasing preexisting ground-relative flow above the near-ground layer yields increasing SRH. The magnitude of the SRH increase is sensitive to storm motion, with more deviant motion yielding greater SRH increases given the same increase in ground-relative flow. Supercells may be more susceptible to storm-induced SRH enhancements given their deviant motion and ability to increase ground-relative flow in the background environment.

Author(s):  
Gus Jeans ◽  
Dave Quantrell ◽  
Andrew Watson ◽  
Laure Grignon ◽  
Gil Lizcano

Engineering design codes specify a variety of different relationships to quantify vertical variations in wind speed, gust factor and turbulence intensity. These are required to support applications including assessment of wind resource, operability and engineering design. Differences between the available relationships lead to undesirable uncertainty in all stages of an offshore wind project. Reducing these uncertainties will become increasingly important as wind energy is harnessed in deeper waters and at lower costs. Installation of a traditional met mast is not an option in deep water. Reliable measurement of the local wind, gust and turbulence profiles from floating LiDAR can be challenging. Fortunately, alternative data sources can provide improved characterisation of winds at offshore locations. Numerical modelling of wind in the lower few hundred metres of the atmosphere is generally much simpler at remote deepwater locations than over complex onshore terrain. The sophistication, resolution and reliability of such models is advancing rapidly. Mesoscale models can now allow nesting of large scale conditions to horizontal scales less than one kilometre. Models can also provide many decades of wind data, a major advantage over the site specific measurements gathered to support a wind energy development. Model data are also immediately available at the start of a project at relatively low cost. At offshore locations these models can be validated and calibrated, just above the sea surface, using well established satellite wind products. Reliable long term statistics of near surface wind can be used to quantify winds at the higher elevations applicable to wind turbines using the wide range of existing standard profile relationships. Reduced uncertainty in these profile relationships will be of considerable benefit to the wider use of satellite and model data sources in the wind energy industry. This paper describes a new assessment of various industry standard wind profile relationships, using a range of available met mast datasets and numerical models.


Author(s):  
Lokukaluge P. Perera ◽  
Brage Mo ◽  
Matthias P. Nowak

Ship performance and navigation data are collected by vessels that are equipped with various supervisory control and data acquisition systems (SCADA). Such information is collected as large-scale data sets, therefore various analysis tools and techniques are required to extract useful information from the same. The extracted information on ship performance and navigation conditions can be used to implement energy efficiency and emission control applications (i.e. weather routing type applications) on these vessels. Hence, this study proposes to develop data visualizing methods in order to extract ship performance and navigation information from the respective data sets in relation to weather conditions. The relative wind (i.e. apparent wind) profile (i.e. wind speed and direction) collected by onboard sensors and absolute weather conditions, which are extracted from external data sources by using position and time information a selected vessel (i.e. from the recorded ship routes), are considered. Hence, the relative wind profile of the vessel is compared with actual weather conditions to visualize ship performance and navigation parameters relationships, as the main contribution. It is believed that such relationships can be used to develop appropriate mathematical models to predict ship performance and navigation conditions under various weather conditions.


2013 ◽  
Vol 141 (2) ◽  
pp. 625-648 ◽  
Author(s):  
Robin L. Tanamachi ◽  
Louis J. Wicker ◽  
David C. Dowell ◽  
Howard B. Bluestein ◽  
Daniel T. Dawson ◽  
...  

Abstract Mobile Doppler radar data, along with observations from a nearby Weather Surveillance Radar-1988 Doppler (WSR-88D), are assimilated with an ensemble Kalman filter (EnKF) technique into a nonhydrostatic, compressible numerical weather prediction model to analyze the evolution of the 4 May 2007 Greensburg, Kansas, tornadic supercell. The storm is simulated via assimilation of reflectivity and velocity data in an initially horizontally homogeneous environment whose parameters are believed to be a close approximation to those of the Greensburg supercell inflow sector. Experiments are conducted to test analysis sensitivity to mobile radar data availability and to the mean environmental near-surface wind profile, which was changing rapidly during the simulation period. In all experiments, a supercell with similar location and evolution to the observed storm is analyzed, but the simulated storm’s characteristics differ markedly. The assimilation of mobile Doppler radar data has a much greater impact on the resulting analyses, particularly at low altitudes (≤2 km), than modifications to the near-surface environmental wind profile. Differences in the analyzed updrafts, vortices, cold pool structure, rear-flank gust front structure, and observation-space diagnostics are documented. An analyzed vortex corresponding to the enhanced Fujita scale 5 (EF-5) Greensburg tornado is stronger and deeper in experiments in which mobile (higher resolution) Doppler radar data are included in the assimilation. This difference is linked to stronger analyzed horizontal convergence, which in turn is associated with increased stretching of vertical vorticity. Changing the near-surface wind profile appears to impact primarily the updraft strength, availability of streamwise vorticity for tilting into the vertical, and low-level vortex strength and longevity.


2014 ◽  
Vol 535 ◽  
pp. 135-140
Author(s):  
Yuan Chang Deng ◽  
Zhen Cao Zou

By adjusting the distribution of vertical layers and increasing its number in WRF model, this paper mainly studies the effects of vertical stratification on the near surface wind field and vertical profile simulation. The test outcomes show that moderately increasing vertical layers can effectively improve the near surface wind field simulation results, while it has little influence on the numeral and changing trend of high vertical wind profile. Considering both accuracy and efficiency, it is recommended to set 10~15 layers below 300m. On the basis of this research, instead of USGS data by using the MODIS_30S data, the data underlying surface land in Shenzhen and HK area are updated. Comparative results between the two schemes, due to the roughness and drag coefficient of difference types of surface are not identical; the surface data has a significant impact on wind field and wind profile simulation. Using the MODIS land use data which is more consistent with the actual situation can improve the accuracy of numerical simulation.


2013 ◽  
Vol 52 (12) ◽  
pp. 2735-2752 ◽  
Author(s):  
Ricardo C. Muñoz ◽  
Mark J. Falvey ◽  
Marcelo Araya ◽  
Martin Jacques-Coper

AbstractThe near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two years of multilevel measurements from 80-m towers located in an altitude range between 2100 and 2700 m MSL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley, nose-shaped wind speed profiles are observed, with maximum values occurring at heights between 20 and 60 m AGL. The flow intensity shows considerable interdaily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values of more than 20 m s−1. Turbulent mixing appears to be important over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed that is based on surface friction velocity and surface inversion intensity. At one of the sites, this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observations are needed, however, to define better the dynamics, extent, and turbulence structure of this flow system, which has significant wind-energy, climatic, and environmental implications.


2012 ◽  
Vol 69 (11) ◽  
pp. 3372-3390 ◽  
Author(s):  
Alexander D. Schenkman ◽  
Ming Xue ◽  
Alan Shapiro

Abstract The Advanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic mesovortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Oklahoma on 8–9 May 2007. The simulation used 100-m horizontal grid spacing, and is nested within two outer grids with 400-m and 2-km grid spacing, respectively. Both outer grids assimilate radar, upper-air, and surface observations via 5-min three-dimensional variational data assimilation (3DVAR) cycles. The 100-m grid is initialized from a 40-min forecast on the 400-m grid. Results from the 100-m simulation provide a detailed picture of the development of a mesovortex that produces a submesovortex-scale tornado-like vortex (TLV). Closer examination of the genesis of the TLV suggests that a strong low-level updraft is critical in converging and amplifying vertical vorticity associated with the mesovortex. Vertical cross sections and backward trajectory analyses from this low-level updraft reveal that the updraft is the upward branch of a strong rotor that forms just northwest of the simulated TLV. The horizontal vorticity in this rotor originates in the near-surface inflow and is caused by surface friction. An additional simulation with surface friction turned off does not produce a rotor, strong low-level updraft, or TLV. Comparison with previous two-dimensional numerical studies of rotors in the lee of mountains shows striking similarities to the rotor formation presented herein. The findings of this study are summarized in a four-stage conceptual model for tornadogenesis in this case that describes the evolution of the event from mesovortexgenesis through rotor development and finally TLV genesis and intensification.


2018 ◽  
Vol 146 (8) ◽  
pp. 2667-2693 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker

Abstract Previous work has suggested that the lower-tropospheric wind profile may partly determine whether supercells become tornadic. If tornadogenesis within the VORTEX2 composite environments is more sensitive to the lower-tropospheric winds than to either the upper-tropospheric winds or the thermodynamic profile, then systematically varying the lower-tropospheric wind profile might reveal a “tipping point” between nontornadic and tornadic supercells. As a test, simulated supercells are initiated in environments that have been gradually interpolated between the low-level wind profiles of the nontornadic and tornadic VORTEX2 supercell composites while also interchanging the upper-tropospheric winds and thermodynamic profile. Simulated supercells become tornadic when the low-level wind profile incorporates at least 40% of the structure from the tornadic VORTEX2 composite environment. Both the nontornadic and tornadic storms have similar outflow temperatures and availability of surface vertical vorticity near their updrafts. Most distinctly, a robust low-level mesocyclone and updraft immediately overlie the intensifying near-surface circulation in each of the tornadic supercells. The nontornadic supercells have low-level updrafts that are disorganized, with pockets of descent throughout the region where surface vertical vorticity resides. The lower-tropospheric wind profile drives these distinct configurations of the low-level mesocyclone and updraft, regardless of the VORTEX2 composite upper-tropospheric wind profile or thermodynamic profile. This study therefore supports a potentially useful, robust link between the probability of supercell tornadogenesis and the lower-tropospheric wind profile, with tornadogenesis more (less) likely when the orientation of horizontal vorticity in the lowest few hundred meters is streamwise (crosswise).


2013 ◽  
Vol 70 (3) ◽  
pp. 767-793 ◽  
Author(s):  
Andrew J. Oberthaler ◽  
Paul M. Markowski

Abstract Numerical simulations are used to investigate how the attenuation of solar radiation by the intervening cumulonimbus cloud, particularly its large anvil, affects the structure, intensity, and evolution of quasi-linear convective systems and the sensitivity of the effects of this “anvil shading” to the ambient wind profile. Shading of the pre-gust-front inflow environment (as opposed to shading of the cold pool) has the most important impact on the convective systems. The magnitude of the low-level cooling, associated baroclinicity, and stabilization of the pre-gust-front environment due to anvil shading generally increases as the duration of the shading increases. Thus, for a given leading anvil length, a slow-moving convective system tends to be affected more by anvil shading than does a fast-moving convective system. Differences in the forward speeds of the convective systems simulated in this study are largely attributable to differences in the mean environmental wind speed over the depth of the troposphere. Anvil shading reduces the buoyancy realized by the air parcels that ascend through the updrafts. As a result, anvil shading contributes to weaker updrafts relative to control simulations in which clouds are transparent to solar radiation. Anvil shading also affects the convective systems by modifying the low-level (nominally 0–2.5 km AGL) vertical wind shear in the pre-gust-front environment. The shear modifications affect the slope of the updraft region and system-relative rear-to-front flow, and the sign of the modifications is sensitive to the ground-relative vertical wind profile in the far-field environment. The vertical wind shear changes are brought about by baroclinic vorticity generation associated with the horizontal buoyancy gradient that develops in the shaded boundary layer (which makes the pre-gust-front, low-level vertical wind shear less westerly) and by a reduction of the vertical mixing of momentum due to the near-surface (nominally 0–300 m AGL) stabilization that accompanies the shading-induced cooling. The reduced mixing makes the pre-gust-front, low-level vertical shear more (less) westerly if the ambient, near-surface wind and wind shear are westerly (easterly).


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3659
Author(s):  
Adrián García-Gutiérrez ◽  
Diego Domínguez ◽  
Deibi López ◽  
Jesús Gonzalo

This paper introduces a new methodology for estimating the wind profile within the ABL (Atmospheric Boundary Layer) using a neural network and a single-point near-ground measurement. An important advantage of this solution when compared with others available in the literature is that it only requires near surface measurements for the prognosis once the neural network is trained. Another advantage is that it can be used to study the wind profile temporal evolution. This work uses data collected by a lidar sensor located at the Universidad de León (Spain). The neural network best configuration was determined using sensibility analyses. The result is a multilayer perceptron with three layers for each altitude: the input layer has six nodes for the last three measurements, the second has 128 nodes and the third consists of two nodes that provide u and v. The proposed method has better performance than traditional methods. The obtained wind profile information obtained is useful for multiple applications, such as preliminary calculations of the wind resource or CFD models.


Sign in / Sign up

Export Citation Format

Share Document