scholarly journals Wide Dust Gaps in Protoplanetary Disks Induced by Eccentric Planets: A Mass-eccentricity Degeneracy

2021 ◽  
Vol 922 (2) ◽  
pp. 184
Author(s):  
Yi-Xian Chen ◽  
Zhuoxiao Wang ◽  
Ya-Ping Li ◽  
Clément Baruteau ◽  
Douglas N. C. Lin

Abstract The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in submillimeter images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scaling of characteristic dust-gap width/gap-ring distance with respect to planet mass. Applying such scaling to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bimodal mass function due to (1) the onset of runaway gas accretion above ∼20 Earth masses and (2) suppression of accretion induced by gap opening. Here, we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bimodal mass distribution and the observed continuous gap width distribution. Despite damping due to planet–disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in Atacama Large Millimeter/submillimeter Array images.

2020 ◽  
Vol 500 (2) ◽  
pp. 1697-1707
Author(s):  
Paul C Clark ◽  
Anthony P Whitworth

ABSTRACT We propose a new model for the evolution of a star cluster’s system mass function (SMF). The model involves both turbulent fragmentation and competitive accretion. Turbulent fragmentation creates low-mass seed proto-systems (i.e. single and multiple protostars). Some of these low-mass seed proto-systems then grow by competitive accretion to produce the high-mass power-law tail of the SMF. Turbulent fragmentation is relatively inefficient, in the sense that the creation of low-mass seed proto-systems only consumes a fraction, ${\sim }23{{\ \rm per\ cent}}$ (at most ${\sim }50{{\ \rm per\ cent}}$), of the mass available for star formation. The remaining mass is consumed by competitive accretion. Provided the accretion rate on to a proto-system is approximately proportional to its mass (dm/dt ∝ m), the SMF develops a power-law tail at high masses with the Salpeter slope (∼−2.3). If the rate of supply of mass accelerates, the rate of proto-system formation also accelerates, as appears to be observed in many clusters. However, even if the rate of supply of mass decreases, or ceases and then resumes, the SMF evolves homologously, retaining the same overall shape, and the high-mass power-law tail simply extends to ever higher masses until the supply of gas runs out completely. The Chabrier SMF can be reproduced very accurately if the seed proto-systems have an approximately lognormal mass distribution with median mass ${\sim } 0.11 \, {\rm M}_{\odot }$ and logarithmic standard deviation $\sigma _{\log _{10}({M/M}_\odot)}\sim 0.47$).


2018 ◽  
Vol 620 ◽  
pp. A134 ◽  
Author(s):  
Djoeke Schoonenberg ◽  
Chris W. Ormel ◽  
Sebastiaan Krijt

We introduce a new Lagrangian smooth-particle method to model the growth and drift of pebbles in protoplanetary disks. The Lagrangian nature of the model makes it especially suited to following characteristics of individual (groups of) particles, such as their composition. In this work we focus on the water content of solid particles. Planetesimal formation via streaming instability is taken into account, partly based on previous results on streaming instability outside the water snowline that were presented in a recent publication. We validated our model by reproducing earlier results from the literature and apply our model to steady-state viscous gas disks (with constant gas accretion rate) around stars with different masses. We also present various other models where we explore the effects of pebble accretion, the fragmentation velocity threshold, the global metallicity of the disk, and a time-dependent gas accretion rate. We find that planetesimals preferentially form in a local annulus outside the water snowline, at early times in the lifetime of the disk (≲105 yr), when the pebble mass fluxes are high enough to trigger the streaming instability. During this first phase in the planet formation process, the snowline location hardly changes due to slow viscous evolution, and we conclude that assuming a constant gas accretion rate is justified in this first stage. The efficiency of converting the solids reservoir of the disk to planetesimals depends on the location of the water snowline. Cooler disks with a closer-in water snowline are more efficient at producing planetesimals than hotter disks where the water snowline is located further away from the star. Therefore, low-mass stars tend to form planetesimals more efficiently, but any correlation may be overshadowed by the spread in disk properties.


2020 ◽  
Vol 642 ◽  
pp. A175
Author(s):  
Z. Butcher ◽  
W. van Driel ◽  
S. Schneider

We present a modified optical luminosity–H I mass bivariate luminosity function based on H I line observations from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES), including data from our new, four times more sensitive follow-up H I line observations obtained with the Arecibo radio telescope. The follow-up observations were designed to probe the underlying H I mass distribution of the NIBLES galaxies that were undetected or marginally detected in H I at the Nançay Radio Telescope. Our total follow-up sample consists of 234 galaxies, and it spans the entire luminosity and color range of the parent NIBLES sample of 2600 nearby (900 <  cz <  12 000 km s−1) SDSS galaxies. We incorporated the follow-up data into the bivariate analysis by scaling the NIBLES undetected fraction by an Arecibo-only distribution. We find the resulting increase in low H I mass-to-light ratio densities to be about 10% for the bins −1.0 ≤ log(MHI/M⊙/Lr/L⊙) ≤ −0.5, which produces an increased H I mass function (HIMF) low mass slope of α = −1.14 ± 0.07, being slightly shallower than the values of −1.35 ± 0.05 obtained by recent blind H I surveys. Applying the same correction to the optically corrected bivariate luminosity function from our previous paper produces a larger density increase of about 0.5 to 1 dex in the lowest H I mass-to-light ratio bins for a given luminosity while having a minimal effect on the resulting HIMF low mass slope, which still agrees with blind survey HIMFs. This indicates that while low H I-mass-to-light ratio galaxies do not contribute much to the one-dimensional HIMF, their inclusion has a significant impact on the densities in the two-dimensional distribution.


2021 ◽  
Vol 922 (1) ◽  
pp. 16
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Abstract Gas-giant planets, such as Jupiter, Saturn, and massive exoplanets, were formed via the gas accretion onto the solid cores, each with a mass of roughly 10 Earth masses. However, rapid radial migration due to disk–planet interaction prevents the formation of such massive cores via planetesimal accretion. Comparably rapid core growth via pebble accretion requires very massive protoplanetary disks because most pebbles fall into the central star. Although planetesimal formation, planetary migration, and gas-giant core formation have been studied with a lot of effort, the full evolution path from dust to planets is still uncertain. Here we report the result of full simulations for collisional evolution from dust to planets in a whole disk. Dust growth with realistic porosity allows the formation of icy planetesimals in the inner disk (≲10 au), while pebbles formed in the outer disk drift to the inner disk and there grow to planetesimals. The growth of those pebbles to planetesimals suppresses their radial drift and supplies small planetesimals sustainably in the vicinity of cores. This enables rapid formation of sufficiently massive planetary cores within 0.2–0.4 million years, prior to the planetary migration. Our models shows the first gas giants form at 2–7 au in rather common protoplanetary disks, in agreement with the exoplanet and solar systems.


2019 ◽  
Vol 626 ◽  
pp. A11 ◽  
Author(s):  
P. Cazzoletti ◽  
C. F. Manara ◽  
H. Baobab Liu ◽  
E. F. van Dishoeck ◽  
S. Facchini ◽  
...  

Context. In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. Aims. We aim to compare the general properties of disks and their host stars in the nearby (d = 160 pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. Methods. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is ~0.3′′. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Results. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6 ± 3 M⊕. This value is significantly lower than that of disks in other young (1–3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5–10 Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Conclusions. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.


2010 ◽  
Vol 6 (S277) ◽  
pp. 150-153
Author(s):  
Loïc Le Tiran ◽  
Matthew D. Lehnert

AbstractThe utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. In this proceedings, we analyze observations of ~50 massive galaxies as seen as they were 10 Gyrs ago using SINFONI from the ESO-VLT. We show that the large line width they exhibit can be explained by the intense mechanical energy output from the young stars. We also study the influence of cold gas accretion upon these galaxies: We show that an unrealistic amount of shocked gas would be needed in order to explain the Hα emission from these galaxies through shocks from gas accretion with velocity about the Hα line widths of these galaxies. We also use DEEP2 photometric measurements for a sub-sample of 10 of these galaxies to evaluate their ratio of Hα to FUV flux as a function of their Hα and R-band luminosity surface brightnesses. Our data suggests that perhaps their initial mass function (IMF) is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation. Much work is however needed to accredit this hypothesis.


2021 ◽  
Vol 914 (2) ◽  
pp. L38
Author(s):  
Takahiro Ueda ◽  
Mario Flock ◽  
Tilman Birnstiel

2022 ◽  
Vol 924 (1) ◽  
pp. 9
Author(s):  
Tim Hallatt ◽  
Eve J. Lee

Abstract The sub-Saturn (∼4–8 R ⊕) occurrence rate rises with orbital period out to at least ∼300 days. In this work we adopt and test the hypothesis that the decrease in their occurrence toward the star is a result of atmospheric mass loss, which can transform sub-Saturns into sub-Neptunes (≲4 R ⊕) more efficiently at shorter periods. We show that under the mass-loss hypothesis, the sub-Saturn occurrence rate can be leveraged to infer their underlying core mass function, and, by extension, that of gas giants. We determine that lognormal core mass functions peaked near ∼10–20 M ⊕ are compatible with the sub-Saturn period distribution, the distribution of observationally inferred sub-Saturn cores, and gas-accretion theories. Our theory predicts that close-in sub-Saturns should be ∼50% less common and ∼30% more massive around rapidly rotating stars; this should be directly testable for stars younger than ≲500 Myr. We also predict that the sub-Jovian desert becomes less pronounced and opens up at smaller orbital periods around M stars compared to solar-type stars (∼0.7 days versus ∼3 days). We demonstrate that exceptionally low-density sub-Saturns, “super-puffs,” can survive intense hydrodynamic escape to the present day if they are born with even larger atmospheres than they currently harbor; in this picture, Kepler 223 d began with an envelope ∼1.5× the mass of its core and is currently losing its envelope at a rate of ∼2 × 10−3 M ⊕ Myr−1. If the predictions from our theory are confirmed by observations, the core mass function we predict can also serve to constrain core formation theories of gas-rich planets.


2018 ◽  
Vol 619 ◽  
pp. A89 ◽  
Author(s):  
Z. Butcher ◽  
S. Schneider ◽  
W. van Driel ◽  
M. D. Lehnert

We present a new optical luminosity-HI mass bivariate luminosity function (BLF) based on HI line observations from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES). NIBLES sources lie within the local universe (900 ≤ c z ≤ 12 000 km s−1) and were chosen from SDSS DR5 such that the optical luminosity function was sampled as uniformly as possible. The HI mass function (HIMF) derived from our raw-data BLF, which is based on HI detections only, is consistent with the HIMFs derived from other optically selected surveys in that the low-mass slope is flatter than those derived from blind HI surveys. However, spanning the entire luminosity range of NIBLES, we identify a highly consistent distribution of the HI gas mass to luminosity ratio (gas-to-light ratio) with a predictable progression in the mean MHI/L r ratio as a function of L r. This consistency allows us to construct plausible gas-to-light ratio distributions for very low-luminosity bins which lie outside the NIBLES sample. We also identify a ∼10% decrease in detection fraction for galaxies fainter than log(L r) = 9.25, consistent with the expected decrease due to distance and sensitivity effects. Accounting for these trends, we reconstruct plausible gas-to-light distributions spanning luminosity bins down to log(L r) = 5.25, thus producing a corrected BLF. This corrected BLF is in good qualitative agreement with optical luminosity-HI mass distributions from the ALFALFA survey and is able to accurately reproduce blind survey HIMFs, lending credibility that this two dimensional optical luminosity-HI mass distribution is an accurate representation of the volume density distribution of galaxies in the local universe. We also note that our agreement with HIMFs from other surveys is dependent on accounting for all systematic differences such as selection method, Hubble constant and HI flux scale.


Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai ◽  
Raffaella Schneider

Abstract We study star cluster formation in a low-metallicity environment using three dimensional hydrodynamic simulations. Starting from a turbulent cloud core, we follow the formation and growth of protostellar systems with different metallicities ranging from 10−6 to 0.1 Z⊙. The cooling induced by dust grains promotes fragmentation at small scales and the formation of low-mass stars with M* ∼ 0.01–0.1 M⊙ While the number of low-mass stars increases with metallicity, when Z/Z⊙ ≳ 10−5. the stellar mass distribution is still top-heavy for Z/Z⊙ ≲ 10−2 compared to the Chabrier initial mass function (IMF). In these cases, star formation begins after the turbulent motion decays and a single massive cloud core monolithically collapses to form a central massive stellar system. The circumstellar disk preferentially feeds the mass to the central massive stars, making the mass distribution top-heavy. When Z/Z⊙ = 0.1, collisions of the turbulent flows promote the onset of the star formation and a highly filamentary structure develops owing to efficient fine-structure line cooling. In this case, the mass supply to the massive stars is limited by the local gas reservoir and the mass is shared among the stars, leading to a Chabrier-like IMF. We conclude that cooling at the scales of the turbulent motion promotes the development of the filamentary structure and works as an important factor leading to the present-day IMF.


Sign in / Sign up

Export Citation Format

Share Document