in vitro micronucleus assay
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 350 ◽  
pp. S154
Author(s):  
N. Honarvar ◽  
N. Partosa ◽  
C. Ulrich ◽  
C. Gomes ◽  
S. Berit-Seiffert ◽  
...  

Author(s):  
John W. Wills ◽  
Jatin R. Verma ◽  
Benjamin J. Rees ◽  
Danielle S. G. Harte ◽  
Qiellor Haxhiraj ◽  
...  

AbstractThe in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25–5.0 μg/mL) and/or carbendazim (0.8–1.6 μg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the “DeepFlow” neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for ‘mononucleates’, ‘binucleates’, ‘mononucleates with MN’ and ‘binucleates with MN’, respectively. Successful classifications of ‘trinucleates’ (90%) and ‘tetranucleates’ (88%) in addition to ‘other or unscorable’ phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Gillian E Conway ◽  
Ume-Kulsoom Shah ◽  
Samantha Llewellyn ◽  
Tereza Cervena ◽  
Stephen J Evans ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1152
Author(s):  
Rafaela-Maria Kavasi ◽  
Catarina C. Coelho ◽  
Varvara Platania ◽  
Paulo A. Quadros ◽  
Maria Chatzinikolaidou

Hydroxyapatite (HA) is an important component of the bone mineral phase. It has been used in several applications, such as bone regenerative medicine, tooth implants, drug delivery and oral care cosmetics. In the present study, three different batches of a commercial nanohydroxyapatite (nHA) material were physicochemically-characterized and biologically-evaluated by means of cytotoxicity and genotoxicity using appropriate cell lines based on well-established guidelines (ISO10993-5 and OECD 487). The nHAs were characterized for their size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and were found to have a rod-like shape with an average length of approximately 20 to 40 nm. The nanoparticles were cytocompatible according to ISO 10993-5, and the in vitro micronucleus assay showed no genotoxicity to cells. Internalization by MC3T3-E1 cells was observed by TEM images, with nHA identified only in the cytoplasm and extracellular space. This result also validates the genotoxicity since nHA was not observed in the nucleus. The internalization of nHA by the cells did not seem to affect normal cell behavior, since the results showed good biocompatibility of these nHA nanoparticles. Therefore, this work is a relevant contribution for the safety assessment of this nHA material.


Author(s):  
Maik Schuler ◽  
Lindsay Tomlinson ◽  
Michael Homiski ◽  
Jennifer Cheung ◽  
Yutian Zhan ◽  
...  

Abstract Risk management of in vitro aneugens for topically applied compounds is not clearly defined because there is no validated methodology to accurately measure compound concentration in proliferating stratum basale keratinocytes of the skin. Here, we experimentally tested several known aneugens in the EpiDerm reconstructed human skin in vitro micronucleus assay and compared the results to flow cytometric mechanistic biomarkers (phospho-H3; MPM2, DNA content). We then evaluated similar biomarkers (Ki-67, nuclear area) using immunohistochemistry in skin sections of minipigs following topical exposure the potent aneugens, colchicine, and hesperadin. Data from the EpiDerm model showed positive micronucleus responses for all aneugens tested following topical or direct media dosing with similar sensitivity when adjusted for applied dose. Quantitative benchmark dose-response analysis exhibited increases in the mitotic index biomarkers phospho-H3 and MPM2 for tubulin binders and polyploidy for aurora kinase inhibitors are at least as sensitive as the micronucleus endpoint. By comparison, the aneugens tested did not induce histopathological changes, increases in Ki-67 immunolabeling or nuclear area in skin sections from the in vivo minipig study at doses in significant excess of those eliciting a response in vitro. Results indicate the EpiDerm in vitro micronucleus assay is suitable for the hazard identification of aneugens. The lack of response in the minipig studies indicates that the barrier function of the minipig skin, which is comparable to human skin, protects from the effects of aneugens in vivo. These results provide a basis for conducting additional studies in the future to further refine this understanding.


2020 ◽  
pp. 096032712097934
Author(s):  
Avaneesh Kumar Pandey ◽  
Rajendra Kumar ◽  
Nusrat Shafiq ◽  
Ritika Kondel ◽  
Shanky Garg ◽  
...  

Sustained release nanoformulations of second line antitubercular drugs levofloxacin and ethionamide had shown promise in pharmacokinetics and acute and sub-acute toxicity studies. The present study evaluated the clastogenicity potential of the nanoformulations of these antitubercular agents. Clastogenicity was evaluated by (a) in vitro micronucleus assay (b) in vivo micronucleus assay in Swiss albino mice and (c) sister chromatid exchange (SCE) in CHO cell lines. Ethionamide and levofloxacin loaded nanoparticles were 312 ± 64 nm and 245 ± 24 nm in size respectively and drug encapsulation was 35.2 ± 3.1% w/w and 45.6 ± 9.4% w/w, respectively. The frequency of MN-NCE/1000 NCE and MN-PCE/1000 PCE were significantly reduced in mice treated with ethionamide nanoparticle (3.5 ± 0.9, 13.8 ± 16.68) and levofloxacin nanoparticles (5.6 ± 2.7, 16.7 ± 12.7) compared to the mice treated with free ethionamide (11.5 ± 4.1, p = 0.23 and 45.19 ± 19.21, p = 0.38) and free levofloxacin (14.7 ± 1.88, p < 0.0001 and 54.6 ± 18.1, p = 0.0017), respectively. For in vitro, micronucleus assay frequencies of micronuclei per thousand bi-nucleated cells (MN-BN/1000 BN) was 188.3 ± 20.20 and 148 ± 20.42 for ethionamide and levofloxacin nanoparticles as compared to 232.6 ± 16.04 (p = 0.52) and 175 ± 5.56 (p = 0.45) for free ethionamide and levofloxacin, respectively. The average number of SCE per cell for nanoformulation of ethionamide were not different from that of free drug (4.9 ± 0.51 vs 4.1 ± 0.55, p = 0.86). The SCE per cells were not significant difference for nanoformulation of levofloxacin (2.33 ± 1.36 vs 5.46 ± 0.25, p = 0.88). In vitro and in vivo assays have shown relatively less clastogenic potential of equivalent dose of ethionamide nanoparticles as compared to the conventional formulation.


Mutagenesis ◽  
2020 ◽  
Vol 35 (4) ◽  
pp. 319-330 ◽  
Author(s):  
Gillian E Conway ◽  
Ume-Kulsoom Shah ◽  
Samantha Llewellyn ◽  
Tereza Cervena ◽  
Stephen J Evans ◽  
...  

Abstract Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0–2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.


2020 ◽  
Vol 7 ◽  
pp. 1010-1019 ◽  
Author(s):  
David Thorne ◽  
James Whitwell ◽  
Julie Clements ◽  
Paul Walker ◽  
Damien Breheny ◽  
...  

2019 ◽  
Vol 132 ◽  
pp. 110546 ◽  
Author(s):  
David Thorne ◽  
Robert Leverette ◽  
Damien Breheny ◽  
Mel Lloyd ◽  
Stephen McEnaney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document