Rapid Completion Design Changes with Fiber Optics

2021 ◽  
Author(s):  
John-Bosco Tran ◽  
Matthew Mientka ◽  
Drew Mogck ◽  
Price Stark

Abstract One of the latest developments in permanent fiber optics is ability to install and complete a well in rapidly based on the needs of the program. This paper will present the drivers leading into the operation, the data collected and the completion advances resulting from a permanent fiber conceived and executed in under four weeks. Completion changes were conceived following direct observations of distribution of flow rate, defined in a Uniformity Index. The resulting changes were cost neutral to the overall program but showed improved completion results and well performance.

2021 ◽  
Author(s):  
Ahmed Attia ◽  
Matthew Lawrence

Abstract Distributed Fiber Optics (DFO) technology has been the new face for unconventional well diagnostics. This technology focuses on measuring Distributed Acoustic Sensing (DAS) and Distrusted Temperature Sensing (DTS) to give an in-depth understanding of well productivity pre and post stimulation. Many different completion design strategies, both on surface and downhole, are used to obtain the best fracture network outcome; however, with complex geological features, different fracture designs, and fracture driven interactions (FDIs) effecting nearby wells, it is difficult to grasp a full understanding on completion design performance for each well. Validating completion designs and improving on the learnings found in each data set should be the foundation in developing each field. Capturing a data set with strong evidence of what works and what doesn't, can help the operator make better engineering decisions to make more efficient wells as well as help gauge the spacing between each well. The focus of this paper will be on a few case studies in the Bakken which vividly show how infill wells greatly interfered with production output. A DFO deployed with a 0.6" OD, 23,000-foot-long carbon fiber rod to acquire DAS and DTS for post frac flow, completion, and interference evaluation. This paper will dive into the DFO measurements taken post frac to further explain what effects are seen on completion designs caused by interferences with infill wells; the learnings taken from the DFO post frac were applied to further escalate the understanding and awareness of how infill wells will preform on future pad sites. A showcase of three separate data sets from the Bakken will identify how effective DFO technology can be in evaluating and making informed decisions on future frac completions. In this paper we will also show and discuss how DFO can measure real time FDI events and what measures can be taken to lessen the impact on negative interference caused by infill wells.


2021 ◽  
Author(s):  
Ahmed Farid Ibrahim ◽  
Mazher Ibrahim ◽  
Matt Sinkey ◽  
Thomas Johnston ◽  
Wes Johnson

Abstract Multistage hydraulic fracturing is the common stimulation technique for shale formations. The treatment design, formation in-situ stress, and reservoir heterogeneity govern the fracture network propagation. Different techniques have been used to evaluate the fracture geometry and the completion efficiency including Chemical Tracers, Microseismic, Fiber Optics, and Production Logs. Most of these methods are post-fracture as well as time and cost intensive processes. The current study presents the use of fall-off data during and after stage fracturing to characterize producing surface area, permeability, and fracture conductivity. Shut-in data (15-30 minutes) was collected after each stage was completed. The fall-off data was processed first to remove the noise and water hammer effects. Log-Log derivative diagnostic plots were used to define the flow regime and the data were then matched with an analytical model to calculate producing surface area, permeability, and fracture conductivity. Diagnostic plots showed a unique signature of flow regimes. A long period of a spherical flow regime with negative half-slope was observed as an indication for limited entry flow either vertically or horizontally. A positive half-slope derivative represents a linear flow regime in an infinitely conductive tensile fracture. The quarter-slope derivative was observed in a bilinear flow regime that represents a finite conductivity fracture system. An extended radial flow regime was observed with zero slope derivative which represents a highly shear fractured network around the wellbore. For a long fall-off period, formation recharge may appear with a slope between unit and 1.5 slopes derivative, especially in over-pressured dry gas reservoirs. Analyzing fall-off data after stages are completed provides a free and real-time investigation method to estimate the fracture geometry and a measure of completion efficiency. Knowing the stage properties allows the reservoir engineer to build a simulation model to forecast the well performance and improve the well spacing.


Energy ◽  
2017 ◽  
Vol 138 ◽  
pp. 1056-1068 ◽  
Author(s):  
Yuguang Jiang ◽  
Yaxing Xu ◽  
Silong Zhang ◽  
Khaled Chetehouna ◽  
Nicolas Gascoin ◽  
...  

Author(s):  
Ameen Malkawi ◽  
Ahmed AlAdawy ◽  
Rajesh Kumar V. Gadamsetty ◽  
Rafael Lastra Melo

Abstract Downhole gas compression technology is an artificial lift method that aims to boost production, maximize recovery and delay onset of liquid loading in gas wells. There are different available compression technologies that can be considered for downhole applications, such as screw, scroll, centrifugal and axial compressors. Selection of the appropriate type mainly depends on expected well performance, ambient conditions, compressor operating envelope, technology characteristics, limitations and size constraints. The objective of this study is to perform a feasibility evaluation of compression solutions applicable for a given set of candidate gas wells. Aerodynamic and hydraulic models are used to determine operating conditions, compressor performance, and to select equipment specifications such as impeller diameter, compressor envelope, shaft HP requirement and number of stages among other parameters. A Pugh analysis is performed for all compression technologies and their characteristics to down-select the most suitable solutions for the given set of wells. The results of the analysis indicated an optimal downhole compression technology that covers most of the gas flow rate requirements and meet the performance expectations. The study also provided critical specifications for the compressor, including high-speed operation needed to provide the required flow rates and compression ratio for a relatively small housing diameter. The study also finds that other technologies may be applicable but only to certain population of wells, as the flow rate spectrum is narrower than the optimal solution at the studied conditions. The analysis for the discarded compression technologies in this study showed relatively significant disadvantages for downhole application when compared to the selected compressor. This study presents a holistic analysis for compression technology selection for gas wells that, as per to the understanding of the authors, is unique in the existing literature of gas well applications.


Author(s):  
Hideaki Tamaki ◽  
Satoshi Yamaguchi

The operating range of centrifugal compressors for turbochargers using vaneless diffuser is considered from measurements of the separate pressure rise of the impeller and the diffuser. In some cases, the peak pressure rise of the stage corresponds to the peak pressure rise of the impeller (which is considered to correspond to inducer stall). From these measurements a new correlation for the onset of inducer stall is proposed. In other cases the stability of the vaneless diffuser (defined as positive slope of the pressure rise versus flow characteristic) determines the stability of the stage. A 1D analysis of the pressure rise versus flow rate in a vaneless diffuser captures the main physical effects due to friction and provides a guide to the effect of design changes for increasing the range. Subsequent tests confirm that reduction of diffuser height is the most effective measure for reducing the surge flow rate.


1966 ◽  
Vol 88 (2) ◽  
pp. 224-230 ◽  
Author(s):  
Jerry R. Johanson

A properly designed bin and hopper results in savings through better flow-rate control, larger live-storage capacity, and improved uniformity of withdrawn materials. Unfortunately, most bins are not designed for proper flow. Changes in the basic design of existing bins are difficult to justify economically. Using flow-corrective inserts can sometimes cause proper flow without costly basic design changes. The proper placement and the limitations of these inserts are discussed in this paper.


2014 ◽  
Vol 496-500 ◽  
pp. 877-880
Author(s):  
Feng Xia Shi ◽  
Jun Hu Yang ◽  
Xiao Hui Wang

Two models of hydraulic turbine based on pump in reversal were simulated. Pressure distribution of flow field in Variable conditions was analysed and external characteristic was forecasted for hydraulic turbine. It was shown: the head increased with flow increased, with increasing of flow rate, efficiency first increased and then decreased. Compared with the turbine with a guide vane, the head of two models was almost equal, but the disparity of efficiency was large, and the efficiency of hydraulic turbine with a guide vane above on the efficiency of hydraulic turbine without guide vane. Pressure pulsation was existent in runner inlet. From runner inlet to runner outlet, the pressure distributed evenly from high to low. Added with a guide vane, the pressure distribution was more evenly than before and the Amplitude of pressure fluctuation decreased.


1970 ◽  
Vol 36 (292) ◽  
pp. 2104-2115 ◽  
Author(s):  
Koji AKAGAWA ◽  
Tadashi SAKAGUCHI ◽  
Makoto KONO ◽  
Masaharu NISHIMURA

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8185
Author(s):  
Rahman Lotfi ◽  
Mostafa Hosseini ◽  
Davood Aftabi ◽  
Alireza Baghbanan ◽  
Guanshui Xu

Acid fracturing simulation has been widely used to improve well performance in carbonate reservoirs. In this study, a computational method is presented to optimize acid fracturing treatments. First, fracture geometry parameters are calculated using unified fracture design methods. Then, the controllable design parameters are iterated till the fracture geometry parameters reach their optimal values. The results show higher flow rates are required to achieve optimal fracture geometry parameters with larger acid volumes. Detailed sensitivity analyses are performed on controllable and reservoir parameters. It shows that higher flow rates should be applied for fluids with lower viscosity. Straight acid reaches optimal conditions at higher flow rates and lower volumes. These conditions for retarded acids appear to be only at lower flow rates and higher volumes. The study of the acid concentration for gelled acids shows that both flow rate and volume increase as the concentration increases. For the formation with lower permeability, a higher flow rate is required to achieve the desired larger fracture half-length and smaller fracture width. Further investigations also show that the formation with higher Young’s modulus requires decreasing the acid volume and increasing the optimal flow rate, while the formation with higher closure stress requires increasing the acid volume and decreasing the flow rate.


Sign in / Sign up

Export Citation Format

Share Document