scholarly journals Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1399
Author(s):  
Muhammad Awais ◽  
Muhammad Qasim ◽  
Javed Iqbal Tanoli ◽  
Lin Ding ◽  
Maryam Sattar ◽  
...  

This study reported the detrital zircon U-Pb geochronology of the Cenozoic sequence exposed in Kotli, northwestern Himalaya, Pakistan, which forms part of the Kashmir foreland basin. The U-Pb detrital age patterns of the Paleocene Patala Formation show a major age cluster between ~130–290 Ma, ~500–1000 Ma and ~1000–1500 Ma, which mainly resembles the lesser and higher Himalayan sequence. However, the younger age pattern (~130–290 Ma) can be matched to the ages of the ophiolites exposed along the Indus–Tsangpo suture zone. In addition, two younger grains with 57 Ma and 55 Ma ages may indicate a contribution from the Kohistan-Ladakh arc. The detrital zircons in the upper Tertiary sequence show the increased input of younger detrital ages <100 Ma, with more pronounced peaks at ~36–58 Ma, ~72–94 Ma and ~102–166 Ma, indicating the strong resemblance to the Asian sources including the Kohistan–Ladakh arc, Karakoram block and Gangdese batholith. This provenance shift, recorded in the upper portion of Patala Formation and becoming more visible in the upper Tertiary clastic sequence (Kuldana and Murree formations), is related to the collision of the Indian and Asian plates in the northwestern Himalayas. Considering the age of the Patala Formation, we suggest that the Indian and Asian plates collided during 57–55 Ma in the northwestern Himalayas, Pakistan.

Geology ◽  
2020 ◽  
Author(s):  
Emily S. Finzel ◽  
Justin A. Rosenblume

Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates.


2010 ◽  
Vol 148 (3) ◽  
pp. 380-403 ◽  
Author(s):  
NİLGÜN OKAY ◽  
THOMAS ZACK ◽  
ARAL I. OKAY ◽  
MATTHIAS BARTH

AbstractThe Lower Carboniferous flysch of the Istanbul Zone in Turkey is an over 1500 m thick turbiditic sandstone–shale sequence marking the onset of the Variscan deformation in the Pontides. It overlies Lower Carboniferous black cherts and is unconformably overlain by Lower Triassic continental sandstones and conglomerates. The petrography of the Carboniferous sandstones and the geochronology and geochemistry of the detrital zircons and rutiles were studied to establish the provenance of the clastic rocks. The sandstones are feldspathic to lithic greywackes and subgreywackes with approximately equal amounts of quartz, feldspar and lithic clasts. The amount of quartz and lithic fragments decreases upwards in the sequence at the expense of feldspar. The lithic fragments are dominated by intermediate volcanic rocks, followed by metamorphic and sedimentary rock fragments. Coarse lithic fragments are generally granitoidic. In the discrimination diagrams, sandstone samples lie mainly in the field of dissected arc. A total of 218 detrital zircons and 35 detrital rutiles from four sandstone samples were analysed with laser ablation ICP-MS. The detrital zircons show a predominantly bimodal age distribution with Late Devonian to Early Carboniferous (390 to 335 Ma) and Cambrian–Neoproterozoic (640 to 520 Ma) ages. The remaining 9 % of the analysed zircons are in the 1700–2750 Ma range; zircons of the 700–1700 Ma age range are absent. The REE patterns and Th/U ratios of the zircons are consistent with a magmatic origin. With one exception (Neoproterozoic), the rutile ages are Late Devonian–Early Carboniferous and their geochemistry indicates that they were derived from amphibolite-facies metamorphic rocks. Sandstone petrography and detrital zircon–rutile ages suggest one dominant source for the Lower Carboniferous sandstones: a Late Devonian to Early Carboniferous magmatic and metamorphic province with overprinted Neoproterozoic basement. Late Devonian–Early Carboniferous magmatic and metamorphic rocks are unknown from the Eastern Mediterranean region. They are, however, widespread in central Europe. The Istanbul Zone is commonly correlated with the Avalonian terrranes in central Europe, which collided with the Armorican terranes during Carboniferous times, resulting in the Variscan orogeny. The Carboniferous flysch of the Istanbul Zone must have been derived from a colliding Armorican terrane, as indicated by the absence of 700–1700 Ma zircons and by Late Devonian–Early Carboniferous magmatism, typical features of the Armorican terranes. This suggests that during Carboniferous times the Istanbul terrane was located close to the Bohemian Massif and has been translated by strike-slip along the Trans-European Suture Zone to its Cretaceous position north of the Black Sea.


2002 ◽  
Vol 39 (10) ◽  
pp. 1505-1515 ◽  
Author(s):  
João Orestes Schneider Santos ◽  
Léo Afraneo Hartmann ◽  
Neal Jesse McNaughton ◽  
Robert M Easton ◽  
Ron G Rea ◽  
...  

A sensitive high resolution ion microprobe (SHRIMP) was used in combination with backscattered electron (BSE) and cathodoluminescence (CL) images to determine the age of detrital zircons from sandstones in the Neoproterozoic Middle Run Formation of the eastern Midwest, United States. Eleven samples from seven drill cores of the upper part of the Middle Run Formation contain detrital zircons ranging in age from 1030 to 1982 Ma (84 analyses), with six distinctive modes at 1.96, 1.63, 1.47, 1.34, 1.15, and 1.08 Ga. This indicates that most, but not all, of the zircon at the top of the Middle Run Formation was derived from the Grenville Orogen. The youngest concordant detrital zircon yields a maximum age of 1048 ± 22 Ma for the Middle Run Formation, indicating that the formation is younger than ca. 1026 Ma minus the added extra time needed for later uplift, denudation, thrusting, erosion, and transport to southwestern Ohio. Thus, as judged by proximity, composition, thickness, and geochronology, it is a North American equivalent to other Neoproterozoic Grenvillian-derived basins, such as the Torridon Group of Scotland and the Palmeiral Formation of South America. An alternate possibility, although much less likely in our opinion, is that it could be much younger, any time between 1048 ± 22 Ma and the deposition of the Middle Cambrian Mount Simon Sandstone at about 510 Ma, and still virtually almost all derived from rocks of the Grenville Orogen.


2016 ◽  
Vol 53 (2) ◽  
pp. 140-155 ◽  
Author(s):  
M.L. Golding ◽  
J.K. Mortensen ◽  
F. Ferri ◽  
J.-P. Zonneveld ◽  
M.J. Orchard

Triassic rocks of the Western Canada Sedimentary Basin (WCSB) have previously been interpreted as being deposited on the passive margin of North America. Recent detrital zircon provenance studies on equivalent Triassic rocks in the Yukon have suggested that these rocks were in part derived from the pericratonic Yukon–Tanana terrane and were deposited in a foreland basin related to the Late Permian Klondike orogeny. Detrital zircons within a number of samples collected from Triassic sediments of the WCSB throughout northeastern British Columbia and western Alberta suggest that the bulk of the sediment was derived from recycled sediments of the miogeocline along western North America, with a smaller but significant proportion coming from the Innuitian orogenic wedge in the Arctic and from local plutonic and volcanic rocks. There is also evidence of sediment being derived from the Yukon–Tanana terrane, supporting the model of terrane accretion occurring prior to the Triassic. The age distribution of detrital zircons from the WCSB in British Columbia is similar to those of the Selwyn and Earn sub-basins in the Yukon and is in agreement with previous observations that sediment deposited along the margin of North America during the Triassic was derived from similar source areas. Together these findings support the model of deposition within a foreland basin, similar to the one inferred in the Yukon. Only a small proportion of zircon derived from the Yukon–Tanana terrane is present within Triassic strata in northeastern British Columbia, which may be due to post-Triassic erosion of the rocks containing these zircons.


2020 ◽  
Vol 57 (4) ◽  
pp. 477-493 ◽  
Author(s):  
Zhongjie Xu ◽  
Jintao Kong ◽  
Rihui Cheng ◽  
Liaoliang Wang

Controversies exist regarding the mechanism of formation of basins located on the continental margin of South China as well as when they formed. It was ascertained based on clastic petrology, geochemical analysis, and zircon U–Pb dating that the sedimentary provenances in the eastern Guangdong Basin are mainly felsic igneous rocks from the late Early Jurassic to the Middle Jurassic. The late Early Jurassic Qiaoyuan Formation mainly shows major age peaks at approximately 238 Ma, 259 Ma, and 1858 Ma, and the Middle Jurassic Tangxia Formation shows major age peaks at approximately 169 Ma and 172 Ma. From the late Early Jurassic to the Middle Jurassic in the eastern Guangdong Basin, the source region changes from southwestern South China and southern South China to the eastern Nanling Range. It was determined by comparing the detrital zircon ages of the Qiaoyuan Formation and the Tangxia Formation with those of the late Paleozoic to early Mesozoic basins, and analyzing both the geochemical data and sedimentation, that the eastern Guangdong Basin changed from the basin-arc foreland basin of the late Early Jurassic to the back-arc extension basin of the Middle Jurassic. The changes in early Mesozoic detrital zircon age peaks indicate that the tectonic regime of the eastern Guangdong Basin ended the transformation from the Tethyan tectonic domain to the paleo-Pacific tectonic domain in the early Middle Jurassic (approximately 172 Ma).


2009 ◽  
Vol 4 ◽  
pp. 111-116 ◽  
Author(s):  
J. S. MacLean ◽  
J. W. Sears ◽  
K. R. Chamberlain ◽  
A. K. Khudoley ◽  
A. V. Prokopiev ◽  
...  

Abstract. Strikingly similar Late Mesoproterozoic stratigraphic sequences and correlative U-Pb detrital-zircon ages may indicate that the Sette Daban region of southeastern Siberia and the Death Valley region of southwestern North America were formerly contiguous parts of a Grenville foreland basin. The Siberian section contains large numbers of detrital zircons that correlate with Grenville, Granite-Rhyolite, and Yavapai basement provinces of North America. The sections in both Siberia and Death Valley exhibit west-directed thrust faults that may represent remnants of a Grenville foreland thrust belt. North American detrital-zircon components do not occur in Siberian samples above a ~600 Ma breakup unconformity, suggesting that rifting and continental separation blocked transfer of clastic sediment between the cratons by 600 Ma. Faunal similarities suggest, however, that the two cratons remained within the breeding ranges of Early Cambrian trilobites and archeocyathans.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


Sign in / Sign up

Export Citation Format

Share Document