scholarly journals Automatic fall monitoring using the floor vibration

ACTA IMEKO ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Marco Tarabini ◽  
Filip Gocanin ◽  
Bortolino Saggin ◽  
Diego Scaccabarozzi ◽  
Marco Bocciolone

<span lang="EN-GB">This work investigates the possibility of monitoring the activity and the falls of people in dwellings using three or more accelerometers fixed on the ground. The main difference between the proposed method and existing ones is the use of acceleration to estimate the impact force by using the apparent mass of the floor; the latter is experimentally identified in each room in which the tests were performed using the heel drop test. The study has two parts: 1. the apparent masses of different dwellings’ floors have been measured. 2. the ground reaction force is studied using a purposely designed force platform with a surface of approximately 2 m x 1 m. The force platform allowed the measurement of the forces generated by the falls of 21 subjects, of a crash test dummy (falling in front or rear direction from seated and standing position, with or without the interposition of objects on the trajectory), and of common objects (e.g. dishes, water bottles, books). The impact location is estimated by triangulation, using a wavelet algorithm derived from the existent literature. The results show the possibility of identifying the presence of subjects inside the room and the fall of subjects in the majority of dwellings. We conclude that the proposed method allows a clear distinction between the fall of subjects and objects, given that the difference in terms of force (which is estimated from the floor’s apparent mass and from the measured acceleration) is at least of one order of magnitude.</span>

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 91
Author(s):  
Sunghyun Lim ◽  
Yong-hyeon Ji ◽  
Yeong-il Park

Railway vehicles are generally operated by connecting several vehicles in a row. Mechanisms connecting railway vehicles must also absorb front and rear shock loads that occur during a train’s operation. To minimize damage, rail car couplers are equipped with a buffer system that absorbs the impact of energy. It is difficult to perform a crash test and evaluate performance by applying a buffer to an actual railway vehicle. In this study, a simulation technique using a mathematical buffer model was introduced to overcome these difficulties. For this, a model of each element of the buffer was built based on the experimental data for each element of the coupling buffer system and a collision simulation program was developed. The buffering characteristics of a 10-car train colliding at 25 km/h were analyzed using a developed simulator. The results of the heavy collision simulation showed that the rubber buffer was directly connected to the hydraulic shock absorber in a solid contact state, and displacement of the hydraulic buffer hardly occurred despite the increase in reaction force due to the high impact speed. Since the impact force is concentrated on the vehicle to which the collision is applied, it may be appropriate to apply a deformation tube with different characteristics depending on the vehicle location.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1766-1773
Author(s):  
YOUNGHAN YOUN ◽  
JEONG-SEO KOO

The complete evaluation of the side vehicle structure and the occupant protection is only possible by means of the full scale side impact crash test. But, auto part manufacturers such as door trim makers can not conduct the test especially when the vehicle is under the developing process. The main objective of this study is to obtain the design guidelines by a simple component level impact test. The relationship between the target absorption energy and impactor speed were examined using the energy absorbed by the door trim. Since each different vehicle type required different energy levels on the door trim. A simple impact test method was developed to estimate abdominal injury by measuring reaction force of the impactor. The reaction force will be converted to a certain level of the energy by the proposed formula. The target of absorption energy for door trim only and the impact speed of simple impactor are derived theoretically based on the conservation of energy. With calculated speed of dummy and the effective mass of abdomen, the energy allocated in the abdomen area of door trim was calculated. The impactor speed can be calculated based on the equivalent energy of door trim absorbed during the full crash test. With the proposed design procedure for the door trim by a simple impact test method was demonstrated to evaluate the abdominal injury. This paper describes a study that was conducted to determine sensitivity of several design factors for reducing abdominal injury values using the matrix of orthogonal array method. In conclusion, with theoretical considerations and empirical test data, the main objective, standardization of door trim design using the simple impact test method was established.


2016 ◽  
Vol 4 (2) ◽  
pp. 471-488 ◽  
Author(s):  
Jon D. Pelletier ◽  
Mary H. Nichols ◽  
Mark A. Nearing

Abstract. Quantifying how landscapes have responded and will respond to vegetation changes is an essential goal of geomorphology. The Walnut Gulch Experimental Watershed (WGEW) offers a unique opportunity to quantify the impact of vegetation changes on landscape evolution over geologic timescales. The WGEW is dominated by grasslands at high elevations and shrublands at low elevations. Paleovegetation data suggest that portions of WGEW higher than approximately 1430 m a.s.l. have been grasslands and/or woodlands throughout the late Quaternary, while elevations lower than 1430 m a.s.l. changed from a grassland/woodland to a shrubland ca. 2–4 ka. Elevations below 1430 m a.s.l. have decadal timescale erosion rates approximately 10 times higher, drainage densities approximately 3 times higher, and hillslope-scale relief approximately 3 times lower than elevations above 1430 m. We leverage the abundant geomorphic data collected at WGEW over the past several decades to calibrate a mathematical model that predicts the equilibrium drainage density in shrublands and grasslands/woodlands at WGEW. We use this model to test the hypothesis that the difference in drainage density between the shrublands and grassland/woodlands at WGEW is partly the result of a late Holocene vegetation change in the lower elevations of WGEW, using the upper elevations as a control. Model predictions for the increase in drainage density associated with the shift from grasslands/woodlands to shrublands are consistent with measured values. Using modern erosion rates and the magnitude of relief reduction associated with the transition from grasslands/woodlands to shrublands, we estimate the timing of the grassland-to-shrubland transition in the lower elevations of WGEW to be approximately 3 ka, i.e., broadly consistent with paleovegetation studies. Our results provide support for the hypothesis that common vegetation changes in semi-arid environments (e.g., from grassland to shrubland) can change erosion rates by more than an order of magnitude, with important consequences for landscape morphology.


2018 ◽  
Vol 57 (8) ◽  
pp. 1825-1845 ◽  
Author(s):  
Roger Edwards ◽  
John T. Allen ◽  
Gregory W. Carbin

AbstractConvective surface winds in the contiguous United States are classified as severe at 50 kt (58 mi h−1, or 26 m s−1), whether measured or estimated. In 2006, NCDC (now NCEI) Storm Data, from which analyzed data are directly derived, began explicit categorization of such reports as measured gusts (MGs) or estimated gusts (EGs). Because of the documented tendency of human observers to overestimate winds, the quality and reliability of EGs (especially in comparison with MGs) has been challenged, mostly for nonconvective winds and controlled-testing situations, but only speculatively for bulk convective data. For the 10-yr period of 2006–15, 150 423 filtered convective-wind gust magnitudes are compared and analyzed, including 15 183 MGs and 135 240 EGs, both nationally and by state. Nonmeteorological artifacts include marked geographic discontinuities and pronounced “spikes” of an order of magnitude in which EG values (in both miles per hour and knots) end in the digits 0 or 5. Sources such as NWS employees, storm chasers, and the general public overestimate EGs, whereas trained spotters are relatively accurate. Analysis of the ratio of EG to MG and their sources also reveals an apparent warning-verification-influence bias in the climatological distribution of wind gusts imparted by EG reliance in the Southeast. Results from prior wind-tunnel testing of human subjects are applied to 1) illustrate the difference between measured and perceived winds for the database and 2) show the impact on the severe-wind dataset if EGs were bias-corrected for the human overestimation factor.


2007 ◽  
Vol 23 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Rita Santos-Rocha ◽  
António Veloso

Mechanical load has been estimated during step exercise based on ground reaction force (GRF) obtained by force platforms. It is not yet accurately known whether these measures reflect foot contact forces once the latter depend on footwear and are potentially modified by the compliant properties of the step bench. The aim of the study was to compare maximal and mean plantar pressure (PP), and maximal GRF obtained by pressure insoles after performing seven movements both over two metal force platforms and over the step bench. Fifteen step-experienced females performed the movements at the cadences of 130 and 140 beats per minute. PP and GRF (estimated from PP) obtained for each floor condition were compared. Maximal PP ranged from 29.27 ± 9.94 to 47.07 ± 12.88 N/cm2 as for metal platforms, and from 28.20 ± 9.32 to 43.00 ± 13.80 N/cm2 as for the step bench. Mean PP ranged from 11.09 ± 1.62 to 14.32 ± 2.06 N/cm2 (platforms) and from 10.71 ± 1.54 to 14.22 ± 1.77 N/cm2 (step bench). GRF (normalized body weight) ranged from 1.43 ± 0.14 to 2.41 ± 0.24 BW (platforms) and from 1.38 ± 0.14 to 2.36 ± 0.19 BW (step bench). No significant statistical differences were obtained for most of the comparisons between the two conditions tested. The results suggest that metal force platform surfaces are suitable to assess mechanical load during this physical activity. The forces applied to the foot are similar to the softer step bench and the hard force platform surface. This may reflect the ability of the performers to adapt their movement patterns to normalize the impact forces in different floor conditions.


2016 ◽  
Vol 10 (6) ◽  
pp. 2655-2672 ◽  
Author(s):  
Ghislain Picard ◽  
Quentin Libois ◽  
Laurent Arnaud

Abstract. Ice is a highly transparent material in the visible. According to the most widely used database (IA2008; Warren and Brandt, 2008), the ice absorption coefficient reaches values lower than 10−3 m−1 around 400 nm. These values were obtained from a vertical profile of spectral radiance measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using an optical fiber inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra. They present a significant variability but absorption coefficients are overall larger than IA2008 by 1 order of magnitude at 400–450 nm. We devised another estimation method based on Bayesian inference that treats all the profiles simultaneously. It reduces the statistical variability and confirms the higher absorption, around 2  ×  10−2 m−1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3-D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation shows that the radiance profile is indeed perturbed by the fiber intrusion, but the error on the ice absorption estimate is not larger than a factor of 2. This is insufficient to explain the difference between our new estimate and IA2008. The same conclusion applies regarding the plausible contamination by black carbon or dust, concentrations reported in the literature are insufficient. Considering the large number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we nevertheless estimate that ice absorption values around 10−2 m−1 at the minimum are more likely than under 10−3 m−1. A new estimate in the range 400–600 nm is provided for future modeling of snow, cloud, and sea-ice optical properties. Most importantly, we recommend that modeling studies take into account the large uncertainty of the ice absorption coefficient in the visible and that future estimations of the ice absorption coefficient should also thoroughly account for the impact of the measurement method.


Author(s):  
Dong Xiang ◽  
Yinhua Shen ◽  
Yaozhong Wei ◽  
Mengxing You

The dissipative contact force model plays a key role in predicting the response of multibody mechanical systems. Contact-impact event can frequently take place in multibody systems and the impact pair is often affected by supporting forces which are treated as external spring forces. However, the external spring forces are ignored during the derivation process of existing dissipative contact force models. Considering the influences of external spring forces, the fact is discussed that the crucial issues, including relative velocity and energy loss, in modeling dissipative contact force are different compared to the same issues analyzed in existing literatures. These differences can result in obvious errors in describing the collision response in multibody systems. Thus, a comparative study is carried out for examining the performances of several popular dissipative contact force models in multibody dynamics. For this comparison, a method associated with Newton's method is proposed to calculate the contact force that meets the Strong's law of energy loss and this force is used as reference. The comparative results show that the models suitable for both hard and soft contact exhibit good accuracy when contact equivalent stiffness is far larger than external spring stiffness by two orders of magnitude. Conversely, these models can cause varying degree and obvious errors in contact force, number of collisions, etc., especially when the difference in stiffness is close to or less than one order of magnitude.


2019 ◽  
pp. 109-123
Author(s):  
I. E. Limonov ◽  
M. V. Nesena

The purpose of this study is to evaluate the impact of public investment programs on the socio-economic development of territories. As a case, the federal target programs for the development of regions and investment programs of the financial development institution — Vnesheconombank, designed to solve the problems of regional development are considered. The impact of the public interventions were evaluated by the “difference in differences” method using Bayesian modeling. The results of the evaluation suggest the positive impact of federal target programs on the total factor productivity of regions and on innovation; and that regional investment programs of Vnesheconombank are improving the export activity. All of the investments considered are likely to have contributed to the reduction of unemployment, but their implementation has been accompanied by an increase in social inequality.


2020 ◽  
Vol 4 (2) ◽  
pp. 150
Author(s):  
Farzana Sharmin Pamela Islam

As 21st century is the era of modern technologies with different aspects, it offers us to make the best use of them. After tape recorder and overhead projector (OHP), multimedia has become an important part of language classroom facilities for its unique and effective application in delivering and learning lesson. Although in many parts of Bangladesh, a South Asian developing country, where English enjoys the status of a foreign language, the use of multimedia in teaching and learning is viewed as a matter of luxury. However, nowadays the usefulness and the necessity of it are well recognized by the academics as well as the government. The study aims to focus on the difference between a traditional classroom void of multimedia and multimedia equipped classrooms at university level by explaining how multimedia support the students with enhanced opportunity to interact with diverse texts that give them more in-depth comprehension of the subject. It also focuses on audio-visual advantage of multimedia on the students’ English language learning. The study has followed a qualitative method to get an in-depth understanding of the impact of using multimedia in an English language classroom at tertiary level. For this purpose, the data have been collected from two different sources. Firstly, from students’ written response to  an open ended question as to their comparative experience of learning  lessons with and without multimedia facilities; and secondly, through  observation of English language classes at a private university of Dhaka, the capital city of Bangladesh. The discussion of the study is limited to  the use of multimedia in English language classroom using cartoons, images and music with a view to enhance students’ skills in academic writing, critical analysis of image and critical appreciation of music. For this purpose, cartoons in English language, images from Google and music from You Tube have got focused discussion in this paper.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


Sign in / Sign up

Export Citation Format

Share Document