scholarly journals Образование и стабильность поверхностных химических соединений при взаимодействии бериллия с поверхностью (101 0) Re

2022 ◽  
Vol 64 (1) ◽  
pp. 134
Author(s):  
Е.В. Рутьков ◽  
Н.Р. Галль

It is shown that the adsorption of Be on Re (1010) in the temperature range of 850-950 K leads to the formation of specific adsorption states - surface chemical compounds (SC) of ReBe stoichiometry with a concentration of adsorbed Be atoms of ~ 1.4 • 1015 cm-2. A multilayer film of beryllium (3-4 layers) is destroyed upon heating, and at 900 K all Be atoms leave the surface into the bulk of rhenium, except those that are part of the SC; atoms from the SC, in turn, actively dissolve at T> 1050-1150 K. This corresponds to a decrease in the activation energy of dissolution upon the formation of SC from about 3.3 to 2.7 eV. Thermal desorption of beryllium takes place only at T> 2100 K due to the emergence of Be atoms dissolved in the bulk of the metal onto the surface.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1176
Author(s):  
Fuqiang Zheng ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
Jinlai Zhang ◽  
...  

The effects of F− concentration, leaching temperature, and time on the Ti leaching from Ti-bearing electric furnace slag (TEFS) by [NH4+]-[F−] solution leaching process was investigated to reveal the leaching mechanism and kinetics of titanium. The results indicated that the Ti leaching rate obviously increased with the increase of leaching temperature and F− concentration. The kinetic equation of Ti leaching was obtained, and the activation energy was 52.30 kJ/mol. The fitting results of kinetic equations and calculated values of activation energy both indicated that the leaching rate of TEFS was controlled by surface chemical reaction. The semi-empirical kinetics equation was consistent with the real experimental results, with a correlation coefficient (R2) of 0.996. The Ti leaching rate reached 92.83% after leaching at 90 °C for 20 min with F− concentration of 14 mol/L and [NH4+]/[F−] ratio of 0.4. The leaching rates of Si, Fe, V, Mn, and Cr were 94.03%, 7.24%, 5.36%, 4.54%, and 1.73%, respectively. The Ca, Mg, and Al elements were converted to (NH4)3AlF6 and CaMg2Al2F12 in the residue, which can transform into stable oxides and fluorides after pyro-hydrolyzing and calcinating.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


1967 ◽  
Vol 6 (48) ◽  
pp. 911-915 ◽  
Author(s):  
M. P. Hochstein ◽  
G. F. Risk

The activation energy ϵe1 of polar firn samples determined by D.C. resistivity measurements is a function of temperature and density. In the temperature range −2° C. to −10° C. ϵe1 decreases with decreasing temperature reaching a nearly constant value for temperatures colder than −10°C.; in the temperature range −10°C. to −21°C. ϵe1 was found to decrease with increasing density and to lie between 0.7 eV. and 0.4 eV.


2014 ◽  
Vol 58 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Aneta Strachecka ◽  
Grzegorz Borsuk ◽  
Jerzy Paleolog ◽  
Krzysztof Olszewski ◽  
Milena Bajda ◽  
...  

Abstract Body-surface chemical compounds were studied in 1-day-old nest workers and foragers both in Buckfast and Caucasian bees. The workers of these two age-castes were sampled twice in each of two consecutive years. Body-surface lipids were determined by means of gas chromatography, with a GCQ mass spectrometer. Protein concentrations and activities on the body surface were examined in bee cuticle rinsings obtained from worker bees according to the methods of Lowry, of Anson, and of Lee and Lin. Protease and protease inhibitor activities were determined. Polyacrylamide gel electrophoresis was performed. Caucasian bees, particularly foragers, had more lipids, but Buckfast bees (two age-castes) had more proteins on their body surfaces. A total of 17 alkane types (C17 - C33), 13 alkene types (C21 - C33), 21 esters (C12 - C32), and a phenol (C14) were detected in both races. Alkene C33 was detected only in Caucasian bees. More alkanes, esters, and phenols were found in Caucasian 1-day-old nest workers and foragers than in these age-castes of Buckfast bees. The protein concentration and protease inhibitor activities were lower in Caucasian bees that had higher protease activities. These values corresponded with specific numbers and widths of the electrophoretic bands.


1988 ◽  
Vol 126 ◽  
Author(s):  
P. Mel ◽  
S. A. Schwarz ◽  
T. Venkatesan ◽  
C. L. Schwartz ◽  
E. Colas

ABSTRACTTe enhanced mixing of AlAs/GaAs superlattice has been observed by secondary ion mass spectrometry. The superlattice sample was grown by organometallic chemical vapor deposition and doped with Te at concentrations of 2×1017 to 5×1018 cm−.3 In the temperature range from 700 to 1000 C, a single activation energy for the Al diffusion of 2.9 eV was observed. Furthermore, it has been found that the relationship between the Al diffusion coefficient and Te concentration is linear. Comparisons have been made between Si and Te induced superlattice mixing.


2018 ◽  
Vol 26 (2) ◽  
pp. 169-175
Author(s):  
Yaoqi Shi ◽  
Liang Wen ◽  
Zhong Xin

The crystallization activation energy (Δ E) of a polymer comprises the nucleation activation energy Δ F and the transport activation energy Δ E*. In this paper, the Δ E of poly (L-lactic acid) (PLLA) nucleated with nucleating agent p- tert-butylcalix[8]arene (tBC8) was calculated. The results showed that the Δ E of nucleated PLLA was 165.97 kJ/mol, which is higher than that of pure PLLA. The reason why Δ E of PLLA increased when incorporating nucleating agent was studied. The increment of glass transition temperature ( Tg) for nucleated PLLA revealed that the polymer chain mobility was restricted by tBC8, which was considered as the reason for the increase of Δ E*. Further, polyethylene glycol (PEG) was added to improve the chain mobility, thus eliminated the variation of the transport activation energy Δ E* caused by tBC8. Then the effect of the increment of crystallization temperature range on the increase of Δ F was also taken into consideration. It was concluded that both decreasing the mobility of chain segments and increasing the crystallization temperature range caused an increase of Δ E for PLLA/tBC8.


Sign in / Sign up

Export Citation Format

Share Document