isotope cluster
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Martin Taubert ◽  
Will A. Overholt ◽  
Beatrix M. Heinze ◽  
Georgette Azemtsop Matanfack ◽  
Rola Houhou ◽  
...  

AbstractCurrent understanding of organic carbon inputs into ecosystems lacking photosynthetic primary production is predicated on data and inferences derived almost entirely from metagenomic analyses. The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 fixation is an integral component of subsurface trophic webs. To understand the impact of autotrophically fixed carbon, the flux of CO2-derived carbon through various populations of subsurface microbiota must first be resolved, both quantitatively and temporally. Here we implement novel Stable Isotope Cluster Analysis to render a time-resolved and quantitative evaluation of 13CO2-derived carbon flow through a groundwater community in microcosms stimulated with reduced sulfur compounds. We demonstrate that mixotrophs, not strict autotrophs, were the most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the production and remineralization of organic carbon. Their activity facilitated the replacement of 43% and 80% of total microbial carbon stores in the groundwater microcosms with 13C in just 21 and 70 days, respectively. The mixotrophs employed different strategies for satisfying their carbon requirements by balancing CO2 fixation and uptake of available organic compounds. These different strategies might provide fitness under nutrient-limited conditions, explaining the great abundances of mixotrophs in other oligotrophic habitats, such as the upper ocean and boreal lakes.


2021 ◽  
Author(s):  
Ruben Shrestha ◽  
Andres V. Reyes ◽  
Peter R. Baker ◽  
Zhi-Yong Wang ◽  
Robert J. Chalkley ◽  
...  

Metabolic labeling using stable isotopes is widely used for the relative quantification of proteins in proteomic studies. In plants, metabolic labeling using 15N has great potential, but the associated complexity of data analysis has limited its usage. Here, we present the 15N stable-isotope labeled protein quantification workflow utilizing open-access web-based software Protein Prospector (PP). Further, we discuss several important features of 15N labeling required to make reliable and precise protein quantification. These features include ratio adjustment based on labeling efficiency, median and interquartile range for protein ratios, isotope cluster pattern matching to flag incorrect monoisotopic peak assignment, and caching of quantification results for fast retrieval.


2016 ◽  
Author(s):  
Kermit K. Murray ◽  
Robert K. Boyd ◽  
Marcos N. Eberlin ◽  
G. John Langley ◽  
Liang Li ◽  
...  
Keyword(s):  

1993 ◽  
Vol 110 (4-6) ◽  
pp. 133-142 ◽  
Author(s):  
Peter Jurášek ◽  
Milan Slimák ◽  
Martin Košík
Keyword(s):  

1992 ◽  
Vol 4 (4) ◽  
pp. 441-446 ◽  
Author(s):  
W. Emmett Braselton ◽  
Regg D. Neiger ◽  
Robert H. Poppenga

Mass spectrometry/mass spectrometry (MS/MS) with collision-activated dissociation (CAD) was utilized to unequivocally distinguish 1,3-indandione rodenticides in 2 cases of anticoagulant toxicosis. Anecdotal evidence provided by the veterinarian in a case involving feedlot cows and physical evidence at the site of occurrence in a similar case involving lambs strongly implicated diphenadione (diphacinone; DP) in both instances. However, high performance liquid chromatography indicated chlorophacinone (CP), not DP, was present in the blood samples obtained from both cows and lambs. Intact 1,3-indandiones exhibit poor gas chromatographic properties, so procedures were developed for analysis by MS/MS using a direct exposure probe for sample introduction. The EI mass spectra of DP and CP contained a base peak at m/z 173, with molecular ions (M+) at m/z 340 and m/z 374 (Cl isotope cluster), respectively. Corresponding MS/MS CAD parent ion spectra of m/z 173 showed an ion of m/z 340 for DP and 374 (Cl cluster) for CP. CAD analysis of the blood extracts showed a parent ion scan of m/z 173 identical to that of CP, with the m/z 374 (Cl cluster). (Additional evidence was obtained by MS/MS examination of the CAD daughter ion spectrum of m/z 374.) Blood extracts from the affected animals revealed CAD daughter ion spectra for m/z 374 identical to that of reference CP. Positive confirmation of CP in both cases led to identification of the source of the toxicant and prevention of further animal exposures.


Sign in / Sign up

Export Citation Format

Share Document