scholarly journals Ultraviolet Mg ii emission from fast neutral ejecta around Eta Carinae

2019 ◽  
Vol 489 (1) ◽  
pp. 268-281
Author(s):  
Nathan Smith ◽  
Jon A Morse

ABSTRACT We present the first images of the nebula around η Carinae obtained with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST), including an ultraviolet (UV) image in the F280N filter that traces Mg ii emission, plus contemporaneous imaging in the F336W, F658N, and F126N filters that trace near-UV continuum, [N ii], and [Fe ii], respectively. The F336W and F658N images are consistent with previous images in these filters, and F126N shows that for the most part, [Fe ii] λ12567 traces clumpy shocked gas seen in [N ii]. The F280N image, however, reveals Mg ii emission from structures that have not been seen in any previous line or continuum images of η Carinae. This image shows diffuse Mg ii emission immediately outside the bipolar Homunculus nebula in all directions, but with the strongest emission concentrated over the poles. The diffuse structure with prominent radial streaks, plus an anticorrelation with ionized tracers of clumpy shocked gas, leads us to suggest that this is primarily Mg ii resonant scattering from unshocked, neutral atomic gas. We discuss the implied structure and geometry of the Mg ii emission, and its relation to the Homunculus lobes and various other complex nebular structures. An order of magnitude estimate of the neutral gas mass traced by Mg ii is 0.02 M⊙, with a corresponding kinetic energy around 1047 erg. This may provide important constraints on polar mass-loss in the early phases of the great eruption. We argue that the Mg ii line may be an excellent tracer of significant reservoirs of freely expanding, unshocked, and otherwise invisible neutral atomic gas in a variety of stellar outflows.

2021 ◽  
Vol 923 (1) ◽  
pp. 102
Author(s):  
Theodore R. Gull ◽  
Felipe Navarete ◽  
Michael F. Corcoran ◽  
Augusto Damineli ◽  
David Espinoza ◽  
...  

Abstract Since 2002, the far-ultraviolet (FUV) flux (1150–1680 Å) of Eta Carinae, monitored by the Hubble Space Telescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase is attributed to partial dissipation of a line-of-sight (LOS) occulter that blocks the central core of the system. Across the 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence than occurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrum dropped in flux then recovered a few months later. The 2020 periastron passage included enhancements of FUV flux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastron flux levels. The drop in flux is due to increased absorption by singly ionized species as the secondary star plunges deep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUV emission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of the primary star. This is the first time transient brightening has been seen in the FUV comparable to transients previously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulter is associated with material in LOS moving at −100 to −300 km s−1, similar in velocity of structures previously associated with the 1890s lesser eruption.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2009 ◽  
Vol 695 (2) ◽  
pp. 937-953 ◽  
Author(s):  
R. Braun ◽  
D. A. Thilker ◽  
R. A. M. Walterbos ◽  
E. Corbelli

2021 ◽  
Author(s):  
Michelle Bieger ◽  
Quentin Changeat

<p>Retrieval tools provide a way of determining an exoplanet atmosphere's temperature structure and composition with an observed planetary spectrum, working backwards to determine the chemistry and temperature by iteratively comparing synthetic spectra that have been constructed via a forward model to the observed spectra and determining a best-fit result (Barstow and Heng, 2020). This talk will be presenting the emission and reanalysed transmission spectrum and retrieval analysis of WASP-79b, an inflated hot Jupiter first detected by Smalley et al. (2012). Previous transmission spectra of WASP-79b has been analysed in Sozten et al. (2020), Skaf et al. (2020), and Rathcke et al. (2021); all studies agreeing on detections of H2O with various confidence levels, with the latter finding moderate evidence of an H- bound-free opacity compared to iron hydride abundance found by the other studies. Using the publicly available \verb+Iraclis+ data analysis pipeline and the Bayesian atmospheric retrieval framework TauREx 3, we will be adding to the global picture of this planet by examining the Hubble Space Telescope emission spectra as captured by the Wide Field Camera 3 G141 grism (PI: David Sing, proposal ID: 14767). </p>


2021 ◽  
Vol 923 (2) ◽  
pp. 278
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
K. Larson ◽  
G. C. Privon ◽  
L. Armus ◽  
...  

Abstract We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with d L < 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of dN / d τ ∝ τ − 0.5 + / − 0.12 is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- ( dN / d τ ∝ τ − 1.07 + / − 0.12 ) and outer-disk ( dN / d τ ∝ τ − 0.37 + / − 0.09 ) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; dN / dM ∝ M α ) offers marginal evidence for a truncation in the power law at M t ∼ 2×106 M ⊙ for our three most cluster-rich sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of dN / dM ∝ M − 1.42 ± 0.1 for clusters in late-stage mergers relative to early stage (α = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav5335 ◽  
Author(s):  
Yan Kuai ◽  
Junxue Chen ◽  
Xi Tang ◽  
Yifeng Xiang ◽  
Fengya Lu ◽  
...  

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers. The second is that SPRM requires use of metal films as sample substrates; this introduces working wavelength limitations. In addition, cell culture growth on metal films is not as universally available as growth on dielectric substrates. Here we show that use of azimuthal rotation illumination allows SPRM spatial resolution to be enhanced by up to an order of magnitude. The metal film can also be replaced by a dielectric multilayer and then a different label-free surface-sensitive photonic microscopy is developed, which has more choices in terms of the working wavelength, polarization, and imaging section, and will bring opportunities for applications in biology.


2019 ◽  
Vol 492 (2) ◽  
pp. 2044-2057
Author(s):  
Ryan Cooke

ABSTRACT Detecting the change of a cosmological object’s redshift due to the time evolution of the Universal expansion rate is an ambitious experiment that will be attempted with future telescope facilities. In this paper, we describe the ACCELERATION programme, which aims to study the properties of the most underdense regions of the Universe. One of the highlight goals of this programme is to prepare for the redshift drift measurement. Using the EAGLE cosmological hydrodynamic simulations, we estimate the peculiar acceleration of gas in galaxies and the Lyα forest. We find that star-forming ‘cold neutral gas’ exhibits large peculiar acceleration due to the high local density of baryons near star-forming regions. We conclude that absorption by cold neutral gas is unlikely to yield a detection of the cosmological redshift drift. On the other hand, we find that the peculiar accelerations of Lyα forest absorbers are more than an order of magnitude below the expected cosmological signal. We also highlight that the numerous low H i column density systems display lower peculiar acceleration. Finally, we propose a new ‘Lyα cell’ technique that applies a small correction to the wavelength calibration to secure a relative measurement of the cosmic drift between two unrelated cosmological sources at different redshifts. For suitable combinations of absorption lines, the cosmological signal can be more than doubled, while the affect of the observer peculiar acceleration is mitigated. Using current data of four suitable Lyα cells, we infer a limit on the cosmological redshift drift to be $\dot{v}_{\rm obs}\lt 65~{\rm m~s}^{-1}~{\rm yr}^{-1}$ (2σ).


1999 ◽  
Vol 190 ◽  
pp. 445-445 ◽  
Author(s):  
Kenneth J. Mighell ◽  
Ata Sarajedini ◽  
Rica S. French

We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F450W (~B) and F555W (~V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B–V and MV vs (B–V)o color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data. The full details of this analysis are reported in Mighell, Sarajedini, & French (1998, AJ, 116, 2395).


Sign in / Sign up

Export Citation Format

Share Document