scholarly journals In Silico Survey and Characterization of Babesia microti Functional and Non-Functional Proteases

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1457
Author(s):  
Monica Florin-Christensen ◽  
Sarah N. Wieser ◽  
Carlos E. Suarez ◽  
Leonhard Schnittger

Human babesiosis caused by the intraerythrocytic apicomplexan Babesia microti is an expanding tick-borne zoonotic disease that may cause severe symptoms and death in elderly or immunocompromised individuals. In light of an increasing resistance of B. microti to drugs, there is a lack of therapeutic alternatives. Species-specific proteases are essential for parasite survival and possible chemotherapeutic targets. However, the repertoire of proteases in B. microti remains poorly investigated. Herein, we employed several combined bioinformatics tools and strategies to organize and identify genes encoding for the full repertoire of proteases in the B. microti genome. We identified 64 active proteases and 25 nonactive protease homologs. These proteases can be classified into cysteine (n = 28), serine (n = 21), threonine (n = 14), asparagine (n = 7), and metallopeptidases (n = 19), which, in turn, are assigned to a total of 38 peptidase families. Comparative studies between the repertoire of B. bovis and B. microti proteases revealed differences among sensu stricto and sensu lato Babesia parasites that reflect their distinct evolutionary history. Overall, this data may help direct future research towards our understanding of the biology and pathogenicity of Babesia parasites and to explore proteases as targets for developing novel therapeutic interventions.

Healthcare ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 155 ◽  
Author(s):  
John D. Scott ◽  
Kerry L. Clark ◽  
Nikki M. Coble ◽  
Taylor R. Ballantyne

Lyme disease and human babesiosis are the most common tick-borne zoonoses in the Temperate Zone of North America. The number of infected patients has continued to rise globally, and these zoonoses pose a major healthcare threat. This tick-host-pathogen study was conducted to test for infectious microbes associated with Lyme disease and human babesiosis in Canada. Using the flagellin (flaB) gene, three members of the Borrelia burgdorferi sensu lato (Bbsl) complex were detected, namely a Borrelia lanei-like spirochete, Borrelia burgdorferi sensu stricto (Bbss), and a distinct strain that may represent a separate Bbsl genospecies. This novel Bbsl strain was detected in a mouse tick, Ixodes muris, collected from a House Wren, Troglodytes aedon, in Quebec during the southward fall migration. The presence of Bbsl in bird-feeding larvae of I. muris suggests reservoir competency in three passerines (i.e., Common Yellowthroat, House Wren, Magnolia Warbler). Based on the 18S ribosomal RNA (rRNA) gene, three Babesia species (i.e., Babesia divergens-like, Babesia microti, Babesia odocoilei) were detected in field-collected ticks. Not only was B. odocoilei found in songbird-derived ticks, this piroplasm was apparent in adult questing blacklegged ticks, Ixodes scapularis, in southern Canada. By allowing live, engorged ticks to molt, we confirm the transstadial passage of Bbsl in I. muris and B. odocoilei in I. scapularis. Bbss and Babesia microti were detected concurrently in a groundhog tick, Ixodes cookei, in Western Ontario. In Alberta, a winter tick, Dermacentor albipictus, which was collected from a moose, Alces alces, tested positive for Bbss. Notably, a B. divergens-like piroplasm was detected in a rabbit tick, Haemaphysalis leporispalustris, collected from an eastern cottontail in southern Manitoba; this Babesia species is a first-time discovery in Canada. This rabbit tick was also co-infected with Borrelia lanei-like spirochetes, which constitutes a first in Canada. Overall, five ticks were concurrently infected with Babesia and Bbsl pathogens and, after the molt, could potentially co-infect humans. Notably, we provide the first authentic report of I. scapularis ticks co-infected with Bbsl and B. odocoilei in Canada. The full extent of infectious microorganisms transmitted to humans by ticks is not fully elucidated, and clinicians need to be aware of the complexity of these tick-transmitted enzootic agents on human health. Diagnosis and treatment must be administered by those with accredited medical training in tick-borne zoonosis.


2016 ◽  
Vol 19 (1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Ruzauskas ◽  
N. Couto ◽  
A. Pavilonis ◽  
I. Klimiene ◽  
R. Siugzdiniene ◽  
...  

AbstractThe aim of this study was to characterize Staphylococcus pseudintermedius for its antimicrobial resistance and virulence factors with a special focus on methicillin-resistant (MRSP) strains isolated from sick dogs in Lithuania. Clinically sick adult dogs suffering from infections (n=214) and bitches with reproductive disorders (n=36) from kennels were selected for the study. Samples (n=192) from the 250 tested (76.8%) dogs were positive for Staphylococcus spp. Molecular profiling using the species-specific nuc gene identified 51 isolates as S. pseudintermedius (26.6% from a total number of isolated staphylococci) of which 15 isolates were identified as MRSP. Ten MRSP isolates were isolated from bitches with reproductive disorders from two large breeding kennels. Data on susceptibility of S. pseudintermedius to different antimicrobials revealed that all isolates were susceptible to vancomycin, daptomycin and linezolid. Two isolates (3.9%) were resistant to rifampicin. A high resistance was seen towards penicillin G (94.1%), tetracycline (64.7%) and macrolides (68.7%). Resistance to fluoroquinolones ranged from 25.5% (gatifloxacin) to 31.4% (ciprofloxacin). The most prevalent genes encoding resistance included blaZ, aac(6’)-Ie-aph(2’’)-Ia, mecA, and tet(M). The Luk-I gene encoding a leukotoxin was detected in 29% of the isolates, whereas the siet gene encoding exfoliative toxin was detected in 69% of the S. pseudintermedius isolates. This report of MRSP in companion animals represents a major challenge for veterinarians in terms of antibiotic therapy and is a concern for both animal and public health.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 386
Author(s):  
Tal Azagi ◽  
Ryanne I. Jaarsma ◽  
Arieke Docters van Leeuwen ◽  
Manoj Fonville ◽  
Miriam Maas ◽  
...  

Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Amanda Mara Teles ◽  
João Victor Silva-Silva ◽  
Juan Matheus Pereira Fernandes ◽  
Ana Lucia Abreu-Silva ◽  
Kátia da Silva Calabrese ◽  
...  

Syzygium aromaticum has a diversity of biological activities due to the chemical compounds found in its plant products such as total phenolic compounds and flavonoids. The present work describes the chemical analysis and antimicrobial, antioxidant, and antitrypanosomal activity of the essential oil of S. aromaticum. Eugenol (53.23%) as the major compound was verified by gas chromatography-mass spectrometry. S. aromaticum essential oil was more effective against S. aureus (MIC 50 μg/mL) than eugenol (MIC 250 μg/mL). Eugenol presented higher antioxidant activity than S. aromaticum essential oil, with an EC50 of 12.66 and 78.98 µg/mL, respectively. S. aromaticum essential oil and eugenol exhibited Trypanosoma cruzi inhibitory activity, with IC50 of 28.68 ± 1.073 and 31.97 ± 1.061 μg/mL against epimastigotes and IC50 of 64.51 ± 1.658 and 45.73 ± 1.252 μg/mL against intracellular amastigotes, respectively. Both compounds presented low cytotoxicity, with S. aromaticum essential oil displaying 15.5-fold greater selectivity for the parasite than the cells. Nitrite levels in T. cruzi-stimulated cells were reduced by essential oil (47.01%; p  = 0.002) and eugenol (48.05%; p  = 0.003) treatment. The trypanocidal activity of S. aromaticum essential oil showed that it is reasonable to use it in future research in the search for new therapeutic alternatives for trypanosomiasis.


Author(s):  
Bin Ju ◽  
Qi Zhang ◽  
Xiangyang Ge ◽  
Ruoke Wang ◽  
Jiazhen Yu ◽  
...  

AbstractThe pandemic caused by emerging coronavirus SARS-CoV-2 presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. SARS-CoV-2 cellular entry depends on binding between the viral Spike protein receptor-binding domain (RBD) and the angiotensin converting enzyme 2 (ACE2) target cell receptor. Here, we report on the isolation and characterization of 206 RBD-specific monoclonal antibodies (mAbs) derived from single B cells of eight SARS-CoV-2 infected individuals. These mAbs come from diverse families of antibody heavy and light chains without apparent enrichment for particular families in the repertoire. In samples from one patient selected for further analyses, we found coexistence of germline and germline divergent clones. Both clone types demonstrated impressive binding and neutralizing activity against pseudovirus and live SARS-CoV-2. However, the antibody neutralizing potency is determined by competition with ACE2 receptor for RBD binding. Surprisingly, none of the SARS-CoV-2 antibodies nor the infected plasma cross-reacted with RBDs from either SARS-CoV or MERS-CoV although substantial plasma cross-reactivity to the trimeric Spike proteins from SARS-CoV and MERS-CoV was found. These results suggest that antibody response to RBDs is viral species-specific while that cross-recognition target regions outside the RBD. The specificity and neutralizing characteristics of this plasma cross-reactivity requires further investigation. Nevertheless, the diverse and potent neutralizing antibodies identified here are promising candidates for prophylactic and therapeutic SARS-CoV-2 interventions.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


Ensho ◽  
1995 ◽  
Vol 15 (1) ◽  
pp. 33-41
Author(s):  
Isao Nagaoka ◽  
Noriko Ishihara ◽  
Akimasa Someya ◽  
Kazuhisa Iwabuchi ◽  
Shin Yomogida ◽  
...  

Author(s):  
Dawn M. Szymanski ◽  
Kirsten A. Gonzalez

Many lesbian, gay, bisexual, transgender, and queer (LGBTQ) persons are able to persevere and flourish despite pervasive social stigma and minority stress based on their sexual orientation and gender identity. This chapter reviews the research on LGBTQ resilience that can occur at individual, interpersonal/family, community, and contextual/structural levels. The authors describe qualitative research that has examined pathways to resilience and positive LGBTQ identity. The authors also review quantitative research on LGBTQ resilience via mediator, moderator, and moderated mediation models. Variables are described that have been found to explain or buffer the links between external and internalized minority stressors and mental health outcomes. The authors review the small but growing body of research that has begun to examine the efficacy of therapeutic interventions aimed at promoting LGBTQ resilience. Limitations are discussed and directions for future research are suggested.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


Sign in / Sign up

Export Citation Format

Share Document