lysosomal gene
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Supriya Murthy ◽  
Isabel Karkossa ◽  
Caroline Schmidt ◽  
Anne Hoffmann ◽  
Tobias Hagemann ◽  
...  

AbstractThe danger signal extracellular calcium is pathophysiologically increased in the synovial fluid of patients with rheumatoid arthritis (RA). Calcium activates the NLRP3-inflammasome via the calcium-sensing receptor in monocytes/macrophages primed by lipopolysaccharide, and this effect is mediated by the uptake of calciprotein particles (CPPs) formed out of calcium, phosphate, and fetuin-A. Aim of the study was to unravel the influence of calcium on monocytes when the priming signal is not present. Monocytes were isolated from the blood of healthy controls and RA patients. Macrophages were characterized using scRNA-seq, DNA microarray, and proteomics. Imaging flow cytometry was utilized to study intracellular events. Here we show that extracellular calcium and CPPs lead to the differentiation of monocytes into calcium-macrophages when the priming signal is absent. Additional growth factors are not needed, and differentiation is triggered by calcium-dependent CPP-uptake, lysosomal alkalization due to CPP overload, and TFEB- and STAT3-dependent increased transcription of the lysosomal gene network. Calcium-macrophages have a needle-like shape, are characterized by excessive, constitutive SPP1/osteopontin production and a strong pro-inflammatory cytokine response. Calcium-macrophages differentiated out of RA monocytes show a stronger manifestation of this phenotype, suggesting the differentiation process might lead to the pro-inflammatory macrophage response seen in the RA synovial membrane.


2021 ◽  
Vol 118 (41) ◽  
pp. e2113174118
Author(s):  
Bhavyashree Suresh ◽  
Anand Saminathan ◽  
Kasturi Chakraborty ◽  
Matthew Zajac ◽  
Chang Cui ◽  
...  

Lysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution, and autophagy. Tubular lysosomes are studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the biochemical properties lysosomes acquire upon tubulation that could drive their functionality. Here we describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Proteolytic activity maps at single-lysosome resolution revealed that tubular lysosomes were less degradative and showed proximal to distal luminal pH and Ca2+ gradients. Such gradients had been predicted but never previously observed. We identify a role for tubular lysosomes in promoting phagocytosis and activating MMP9. The ability to tubulate lysosomes without starving or activating immune cells may help reveal new roles for tubular lysosomes.


2021 ◽  
Author(s):  
John F. Woolley ◽  
Keyue Chen ◽  
Gizem E. Genc ◽  
Daniel K.C. Lee ◽  
Irakli Dzneladze ◽  
...  

Despite an increased understanding of leukemogenesis, specific mechanisms that underlie stemness in leukemia remain largely undefined. Here, we report a novel pathway which regulates leukemic differentiation through control of lysosomal biology. We show that disruption of INPP4B results in dysregulated lysosomal gene networks, reduced lysosomal numbers and proteolytic capacity in leukemia. Inpp4b-deficient HSCs and LSCs are functionally compromised. Inpp4b-deficient leukemia models develop more differentiated leukemias with reduced disease initiating potential, and improved overall survival compared to Inpp4b-expressing leukemias. Together, our data is consistent with a model where INPP4B restricts differentiation of LSCs through regulation of lysosomal function. These data provide a mechanism to explain the association of INPP4B with aggressive AML and highlight avenues for LSC-specific leukemia therapies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Milton Guilherme Forestieri Fernandes ◽  
Julia Xiao Xuan Luo ◽  
Qiao-Ling Cui ◽  
Kelly Perlman ◽  
Florian Pernin ◽  
...  

AbstractMyelin destruction and oligodendrocyte (OL) death consequent to metabolic stress is a feature of CNS disorders across the age spectrum. Using cells derived from surgically resected tissue, we demonstrate that young (<age 5) pediatric-aged sample OLs are more resistant to in-vitro metabolic injury than fetal O4+ progenitor cells, but more susceptible to cell death and apoptosis than adult-derived OLs. Pediatric but not adult OLs show measurable levels of TUNEL+ cells, a feature of the fetal cell response. The ratio of anti- vs pro-apoptotic BCL-2 family genes are increased in adult vs pediatric (<age 5) mature OLs and in more mature OL lineage cells. Lysosomal gene expression was increased in adult and pediatric compared to fetal OL lineage cells. Cell death of OLs was increased by inhibiting pro-apoptotic BCL-2 gene and autophagy activity. These distinct age-related injury responses should be considered in designing therapies aimed at reducing myelin injury.


2020 ◽  
Author(s):  
Bhavyashree Suresh ◽  
Anand Saminathan ◽  
Kasturi Chakraborty ◽  
Chang Cui ◽  
Lev Becker ◽  
...  

AbstractLysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution and autophagy. To date, tubular lysosomes have been studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the specific biochemical properties lysosomes acquire upon tubulation that could drive their functionality. We describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Lumenal proteolytic activity maps at single lysosome resolution revealed that tubular lysosomes were less degradative. Further, they showed striking proximal to distal lumenal pH and Ca2+ gradients. Such gradients had been predicted, but never previously observed. We now identify a role for tubular lysosomes whereby they poise resting macrophages for phagocytosis. The ability to tubulate lysosomes without having to starve or activate immune cells may help reveal new roles for tubular lysosomes.


2020 ◽  
Vol 55 (6) ◽  
pp. 106004 ◽  
Author(s):  
Sandra P. Smieszek ◽  
Bart P. Przychodzen ◽  
Mihael H. Polymeropoulos

2020 ◽  
Vol 11 ◽  
Author(s):  
Jaya Talreja ◽  
Christian Bauerfeld ◽  
Edward Sendler ◽  
Roger Pique-Regi ◽  
Francesca Luca ◽  
...  

Author(s):  
Sandra P. Smieszek ◽  
Bart P Przychodzen ◽  
Mihael H Polymeropoulos

AbstractSARS-coronavirus 2 is the causal agent of the COVID-19 outbreak. SARS-Cov-2 entry into a cell is dependent upon binding of the viral spike (S) protein to cellular receptor and on cleavage of the spike protein by the host cell proteases such as Cathepsin L and Cathepsin B. CTSL/B are crucial elements of lysosomal pathway and both enzymes are almost exclusively located in the lysosomes.CTSL disruption offers potential for CoVID-19 therapies. The mechanisms of disruption include: decreasing expression of CTSL, direct inhibition of CTSL activity and affecting the conditions of CTSL environment (increase pH in lysosomes).We have conducted a high throughput drug screen gene expression analysis to identify compounds that would downregulate the expression of CTSL/CTSB. One of the top significant results shown to downregulate the expression of the CTSL gene is Amantadine. Amantadine was approved by the US Food and Drug Administration in 1968 as a prophylactic agent for influenza and later for Parkinson’s disease. It is available as a generic drug..Amantadine in addition to downregulating CTSL appears to further disrupt lysosomal pathway, hence interfering with the capacity of the virus to replicate. It acts as a lysosomotropic agent altering the CTSL functional environment. We hypothesize that Amantadine could decrease the viral load in SARS-CoV-2 positive patients and as such it may serve as a potent therapeutic decreasing the replication and infectivity of the virus likely leading to better clinical outcomes. Clinical studies will be needed to examine the therapeutic utility of amantadine in COVID-19 infection.


2019 ◽  
Vol 28 (19) ◽  
pp. 3244-3254 ◽  
Author(s):  
Sarah Jinn ◽  
Cornelis Blauwendraat ◽  
Dawn Toolan ◽  
Cheryl A Gretzula ◽  
Robert E Drolet ◽  
...  

Abstract Multiple genome-wide association studies (GWAS) in Parkinson disease (PD) have identified a signal at chromosome 4p16.3; however, the causal variant has not been established for this locus. Deep investigation of the region resulted in one identified variant, the rs34311866 missense SNP (p.M393T) in TMEM175, which is 20 orders of magnitude more significant than any other SNP in the region. Because TMEM175 is a lysosomal gene that has been shown to influence α-synuclein phosphorylation and autophagy, the p.M393T variant is an attractive candidate, and we have examined its effect on TMEM175 protein and PD-related biology. After knocking down each of the genes located under the GWAS peak via multiple shRNAs, only TMEM175 was found to consistently influence accumulation of phosphorylated α-synuclein (p-α-syn). Examination of the p.M393T variant showed effects on TMEM175 function that were intermediate between the wild-type (WT) and knockout phenotypes, with reduced regulation of lysosomal pH in response to starvation and minor changes in clearance of autophagy substrates, reduced lysosomal localization, and increased accumulation of p-α-syn. Finally, overexpression of WT TMEM175 protein reduced p-α-syn, while overexpression of the p.M393T variant resulted in no change in α-synuclein phosphorylation. These results suggest that the main signal in the chromosome 4p16.3 PD risk locus is driven by the TMEM175 p.M393T variant. Modulation of TMEM175 may impact α-synuclein biology and therefore may be a rational therapeutic strategy for PD.


Sign in / Sign up

Export Citation Format

Share Document