cytokine formation
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

14
(FIVE YEARS 1)

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1364 ◽  
Author(s):  
Mahmoud A. O. Dawood ◽  
Mohammed F. El Basuini ◽  
Sevdan Yilmaz ◽  
Hany M. R. Abdel-Latif ◽  
Zulhisyam Abdul Kari ◽  
...  

Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals’ ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets’ species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals’ performances were simplified and presented for more research and development.


2016 ◽  
Vol 2016 ◽  
pp. 1-29 ◽  
Author(s):  
Anouk Kaulmann ◽  
Torsten Bohn

Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn’s disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies’ own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria,Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.


2014 ◽  
Vol 12 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Matlou I. Mokgobu ◽  
Moloko C. Cholo ◽  
Ronald Anderson ◽  
Helen C. Steel ◽  
Maraki P. Motheo ◽  
...  

2013 ◽  
Vol 109 (03) ◽  
pp. 416-420 ◽  
Author(s):  
Charles Esmon

SummaryInflammatory cytokines promote the activation of coagulation through the induction of tissue factor, downregulation of thrombomodulin and upregulation of plasminogen activator inhibitor. In addition to these mechanisms, infections can trigger the release of extracellular traps from leukocytes consisting of DNA and histones. Tissue injury results in release of nucleosomes. Either of these histone containing structures activate platelets and form a potent procoagulant surface on polyphosphates secreted from the platelets, thereby augmenting thrombus formation. In addition, the histones can inhibit thrombomodulin function. The combination of augmenting the platelet procoagulant activity and impairing thrombomodulin activity probably explains the microvascular thrombotic problems observed when histones are infused into mice. Of the histones, H4 is the most potent in all of these activities. DNAase or blocking histone H4 can decrease the thrombotic response initiated by either the extracellular traps or nucleosomes. In addition to the direct prothrombotic activity of histone-DNA complexes, the complexes trigger activation of the toll-like receptors 2, 4 and 9 thereby increasing inflammatory cytokine formation and fostering thrombotic responses through the mechanisms mentioned previously. Furthermore, these cytokines are likely to increase cell necrosis and apoptosis releasing nucleosomes and further augmenting the activation of leukocytes with the subsequent release of extracellular traps. Blocking this histone-mediated cascade has the potential to impact a variety of clinical conditions including sepsis, trauma, chemical toxicity, transplant injury and reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document