scholarly journals On the Possible Nature of Armchair-Zigzag Structure Formation and Heat Capacity Decrease in MWCNTs

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 518
Author(s):  
Alexander Ponomarev ◽  
Valeriy Egorushkin ◽  
Nadezhda Bobenko ◽  
Maksym Barabashko ◽  
Anastasiya Rezvanova ◽  
...  

Structural disorder and temperature behavior of specific heat in multi walled carbon nanotubes (MWCNTs) have been investigated. The results of X-ray diffractometry, Raman spectroscopy, and transmission electron microscopy (TEM) images are analyzed. The thermodynamic theory of the zigzag-armchair domain structure formation during nanotube synthesis is developed. The influence of structural disorder on the temperature behavior of specific heat is investigated. The size of domains was estimated at ~40 nm. A decrease in heat capacity is due to this size effect. The revealed dependence of the heat capacity of MWCNTs on the structural disorder allows control over thermal properties of nanotubes and can be useful for the development of thermoelectric, thermal interface materials and nanofluids based on them.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012036
Author(s):  
H.M. Hasen ◽  
B. A. Abdulmajeed

Abstract The density and specific heat capacity is an important parameter for heat transfer fluids (HTFs) specially which used for cooling or heating purposes. In this study the density of ethyle methyl imidazolium tetrafluoro borate ionicliquids ([EMIM][BF4]) measured experimentally. In addition, the density (ρ) and the specific heat capacity (Cp) of the ionanofluid (INF) were calculated theoretically. The studied INF composed of multi-walled carbon nanotubes (MWCNTs) dispersed in the ionicliquid (IL) [EMIM][BF4] in the concentrations (0.5%, 1%, 3%, 5%, 7% and 9%). Scanning electron microscopy and differential scanning calorimetry measured for the used MWCNTs. The density and the specific heat capacity of pure [EMIM][BF4] and its INFs were plotted versus temperature in a graphs. The results show that the density of [EMIM][BF4] and its INFs decreased linearly with temperature. The density increased by 0.243%-3.968% for 0.5%-9% MWCNTs concentration in INFs, reaching maximum value of 1.329 g.cm-3 at 20 °C. In contrast the specific heat capacity of [EMIM][BF4] and its INFs increased linearly with temperature with an enhancement of about 0.417%-7.99% for 0.5%-9% concentration of MWCNTs reaching maximum value of 1.812 J/g.K at 358.15K with 9%MWCNT concentration. That’s mean the addition of MWCNT cause increasing both of the density and the specific heat capacity of INF.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 42334-42346 ◽  
Author(s):  
Suchitra Parija ◽  
Arup R. Bhattacharyya

Transmission electron microscopic image of separated MWCNTs (N51L15G5) showing the wrapped polymer chains on the MWCNTs surface, which corresponds to the α-phase of the PP.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2007 ◽  
Vol 334-335 ◽  
pp. 685-688
Author(s):  
Dong Lin Zhao ◽  
Xia Li ◽  
Wei Dong Chi ◽  
Zeng Min Shen

The filling of multi-walled carbon nanotubes (MWNTs) with metallic silver nanowires via wet chemistry method was investigated. The carbon nanotubes were filled with long continuous silver nanowires. The carbon nanotubes were almost opened and cut after being treated with concentrated nitric acid. Silver nitrate solution filled carbon nanotubes by capillarity. Carbon nanotubes were filled with silver nanowires after calcinations by hydrogen. The diameters of silver nanowires were in the range of 20-40nm, and lengths of 100nm-10μm. We studied the micromorphology of the silver nanowires filled in carbon nanotubes by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on the experimental results, a formation mechanism of the Ag nanowire-filled carbon nanotubes was proposed. And the microwave permittivity of the carbon nanotubes filled with metallic silver nanowires was measured in the frequency range from 2 GHz to 18 GHz. The loss tangent of the carbon nanotubes filled with metallic silver nanowires is high. So the carbon nanotubes filled with metallic silver nanowires would be a good candidate for microwave absorbent.


Author(s):  
Tyler J. E. O’Neil ◽  
Celine S. L. Lim ◽  
Sarvenaz Sobhansarbandi

Abstract Phase change materials (PCMs) are commonly used as energy storage mediums in solar thermal systems. This paper investigates the mixture of PCM doped with nanoparticles to be used as HTFs directly integrated in a U-pipe ETC to be applied in solar thermal collectors. The selected type of PCM-HTF in this study is erythritol (C4H10O4), with high specific heat capacity in liquid form, as well as its unique sub-cooling behavior. In order to overcome the low thermal conductivity of erythritol and further enhance specific heat capacity, a weight concentration of 1% multi-walled carbon nanotubes (MWCNT) is added. Additionally, to insure even distribution of MWCNT and consistent properties of the HTF, triethanolamine (TEA) is proposed to be incorporated as a dispersant. The samples were each tested in a Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC) to analyze their thermal properties. The results from the DSC tests show 12.4% enhancement of specific heat capacity of the proposed HTF mixture as well as nearly 5° C depression of freezing onset temperature. This study allows for the optimization of the operating temperature range of the collector when integrated with these materials, where direct heat gain can be obtained in the collector.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
L. Andrés Guerrero ◽  
Lenys Fernández ◽  
Gema González ◽  
Marjorie Montero-Jiménez ◽  
Rafael Uribe ◽  
...  

A hydrogen peroxide (H2O2) sensor and biosensor based on modified multi-walled carbon nanotubes (CNTs) with titanium dioxide (TiO2) nanostructures was designed and evaluated. The construction of the sensor was performed using a glassy carbon (GC) modified electrode with a TiO2–CNT film and Prussian blue (PB) as an electrocalatyzer. The same sensor was also employed as the basis for H2O2 biosensor construction through further modification with horseradish peroxidase (HRP) immobilized at the TiO2–fCNT film. Functionalized CNTs (fCNTs) and modified TiO2–fCNTs were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray DifFraction (XRD), confirming the presence of anatase over the fCNTs. Depending on the surface charge, a solvent which optimizes the CNT dispersion was selected: dimethyl formamide (DMF) for fCNTs and sodium dodecylsulfate (SDS) for TiO2–fCNTs. Calculated values for the electron transfer rate constant (ks) were 0.027 s−1 at the PB–fCNT/GC modified electrode and 4.7 × 10−4 s−1 at the PB–TiO2/fCNT/GC electrode, suggesting that, at the PB–TiO2/fCNT/GC modified electrode, the electronic transfer was improved. According to these results, the PB–fCNT/GC electrode exhibited better Detection Limit (LD) and Quantification Limit (LQ) than the PB–TiO2/fCNT/GC electrode for H2O2. However, the PB film was very unstable at the potentials used. Therefore, the PB–TiO2/fCNT/GC modified electrode was considered the best for H2O2 detection in terms of operability. Cyclic Voltammetry (CV) behaviors of the HRP–TiO2/fCNT/GC modified electrodes before and after the chronoamperometric test for H2O2, suggest the high stability of the enzymatic electrode. In comparison with other HRP/fCNT-based electrochemical biosensors previously described in the literature, the HRP–fCNTs/GC modified electrode did not show an electroanalytical response toward H2O2.


Sign in / Sign up

Export Citation Format

Share Document