Optimized design of obstacle sequences for microfluidic mixing in an inertial regime

Lab on a Chip ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 3910-3923
Author(s):  
Matteo Antognoli ◽  
Daniel Stoecklein ◽  
Chiara Galletti ◽  
Elisabetta Brunazzi ◽  
Dino Di Carlo

A fast method for designing optimal sequences of passive mixing units is provided for inertial flows. Intense mixing is achieved through highly-controlled stretching of the fluid contact surfaces.

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 731 ◽  
Author(s):  
Eriola-Sophia Shanko ◽  
Yoeri van de Burgt ◽  
Patrick D. Anderson ◽  
Jaap M. J. den Toonder

Microfluidic mixing becomes a necessity when thorough sample homogenization is required in small volumes of fluid, such as in lab-on-a-chip devices. For example, efficient mixing is extraordinarily challenging in capillary-filling microfluidic devices and in microchambers with stagnant fluids. To address this issue, specifically designed geometrical features can enhance the effect of diffusion and provide efficient mixing by inducing chaotic fluid flow. This scheme is known as “passive” mixing. In addition, when rapid and global mixing is essential, “active” mixing can be applied by exploiting an external source. In particular, magnetic mixing (where a magnetic field acts to stimulate mixing) shows great potential for high mixing efficiency. This method generally involves magnetic beads and external (or integrated) magnets for the creation of chaotic motion in the device. However, there is still plenty of room for exploiting the potential of magnetic beads for mixing applications. Therefore, this review article focuses on the advantages of magnetic bead mixing along with recommendations on improving mixing in low Reynolds number flows (Re ≤ 1) and in stagnant fluids.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 854
Author(s):  
Yanfang Guan ◽  
Baichuan Sun

Microfluidic mixers have been extensively studied due to their wide application in various fields, including clinical diagnosis and chemical research. In this paper, we demonstrate a mixing platform that can be used for low- and high-viscosity liquid mixing by integrating passive (utilizing the special circulating crossflow characteristics of a zigzag microstructure and cavitation surfaces at the zigzag corners) and active (adding an acoustic field to produce oscillating microbubbles) mixing methods. By exploring the relationship between the active and passive mixing methods, it was found that the microbubbles were more likely generated at the corners of the zigzag microchannel and achieved the best mixing efficiency with the acoustically generated microbubbles (compared with the straight channel). In addition, a higher mixing effect was achieved when the microchannel corner angle and frequency were 60° and 75 kHz, respectively. Meanwhile, the device also achieved an excellent mixing effect for high-viscosity fluids, such as glycerol (its viscosity was approximately 1000 times that of deionized (DI) water at 25 °C). The mixing time was less than 1 s, and the mixing efficiency was 0.95 in the experiment. Furthermore, a new microbubble generation method was demonstrated based on chemical reactions. A higher mixing efficiency (0.97) was achieved by combining the chemical and acoustic microbubble methods, which provides a new direction for future applications and is suitable for the needs of lab-on-a-chip (LOC) systems and point-of-care testing (POCT).


1992 ◽  
Vol 67 (01) ◽  
pp. 046-049 ◽  
Author(s):  
H A Guglielmone ◽  
M A Vides

SummaryA simple and fast method for the quantitative determination of protein C activity in plasma is here described. The first step consists in the conversion of protein C in the test sample into activated protein C by means of an activator isolated from Southern Copperhead venom. Subsequently, the degradation of factor Va, in presence of protein C-deficient plasma, is measured by the prolongation of the prothrombin time which is proportional to the amount of protein C in the sample. The dose-response curve showed a linear relationship from 6 to 150% protein C activity and the inter- and intra-assay reproducibility was 3.5% and 5.6% respectively. In normal subjects, a mean of protein C level of 98 ± 15% of normal pooled plasma was found. Comparison with the anticoagulant assay in samples of patients with oral anticoagulant, liver cirrhosis, disseminated intravascular coagulation and severe preeclampsia revealed an excellent correlation (r = 0.94, p <0.001). Also, a similar correlation (r = 0.93, p <0.001) existed between amidolytic assay and the method here proposed for all the samples studied without including the oral anticoagulant group. These results allowed us to infer that this method evaluates the ability of protein C to interact with protein S, phospholipids, calcium ions and factor Va.


1987 ◽  
Vol 107 (1) ◽  
pp. 9-16
Author(s):  
Dong Jian Li ◽  
Eiichi Tanaka ◽  
Jun Hasegawa

2003 ◽  
Vol 764 ◽  
Author(s):  
D.N. Zakharov ◽  
Z. Liliental-Weber ◽  
A. Motayed ◽  
S.N. Mohammad

AbstractOhmic Ta/Ti/Ni/Au contacts to n-GaN have been studied using high resolution electron microscopy (HREM), energy dispersive X-ray spectrometry (EDX) and electron energy loss spectrometry (EELS). Two different samples were used: A - annealed at 7500C withcontact resistance 5×10-6 Ω cm2 and B-annealed at 7750C with contact resistance 6×10-5 Ω cm2. Both samples revealed extensive in- and out-diffusion between deposited layers with some consumption ofGaNlayerand formation of TixTa1-xN50 (0<x<25) at the GaN interface. Almost an order of magnitude difference in contact resistances can be attributed to structure and chemical bonding of Ti-O layers formed on the contact surfaces.


Shore & Beach ◽  
2020 ◽  
pp. 65-73
Author(s):  
Gen Liu ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Jianhui Liu ◽  
Gang Lei ◽  
...  

Beach nourishment has been widely used for beach protection around the world. However, there is limited information about beach nourishment in China. This study offers an overview of beach nourishment practices, status and technological advances in China, based on the literature, reports, and personal communications. The results demonstrate that beach nourishment has been recognized as an effective and environmentally friendly measure to combat coastal erosion and has been increasingly adopted in China, especially in the past decade. The unique characteristics of coastal China resulted in a difference in beach nourishment between China and Western developed countries in terms of the types, objectives, and shapes of beach nourishment. For the types of nourishments in China, there were approximately the same number of restored beaches and newly constructed beaches. For fill sediment, homogeneous fill and heterogeneous fill comprised 51.1% and 48.9% of projects, respectively. The objective of beach nourishment was mainly to promote coastal tourism, and the shape of nourished beaches was dominated by headland bays. This study also indicated that China has achieved a number of technological advances in beach nourishment, including methods of beach nourishment on severely eroded coasts and muddy coasts, an optimized design of drain pipes involved in urban beaches, and ecological design considerations. From the past decade of practices, four aspects were proposed as considerations for future nourishment: sand sources, technique advances, ecological effects, and management of beach nourishments.


2020 ◽  
pp. 99-104
Author(s):  
S.A. Zaydes ◽  
A.N. Mashukov ◽  
T.Ya. Druzhinina

The contact belt of the gate assembly is the main part of high pressure fittings. The serviceability of the fittings assembly as whole depends on the air-tightness and quality of the mating surfaces. The technology of diamond burnishing allows to increase the interface of the nodes by red ucing the surface roughness of the metal-to-metal seal. The real experience for improving of the fittings contact belt due to the use of diamond burnishing of the nozzles seats and the conical surface of the rods.


Sign in / Sign up

Export Citation Format

Share Document