electrostatic control
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ye Hao ◽  
Jiang Zhidi ◽  
Hu Jianping

In this paper, we propose a new type of tri-input tunneling field-effect transistor (Ti-TFET) that can compactly realize the “Majority-Not” logic function with a single transistor. It features an ingenious T-shaped channel and three independent-biasing gates deposited and patterned on its left, right, and upper sides, which greatly enhance the electrostatic control ability between any two gates of all the three gates on the device channel and thus increase its turn-on current. The total current density and energy band distribution in different biasing conditions are analyzed in detail by TCAD simulations. The turn-on current, leakage current, and ratio of turn-on/off current are optimized by choosing appropriate work function and body thickness. TCAD simulation results verify the expected characteristics of the proposed Ti-TFETs in different working states. Ti-TFETs can flexibly be used to implement a logic circuit with a compact style and thus reduce the number of transistors and stack height of the circuits. It provides a new technique to reduce the chip area and power consumption by saving the number of transistors.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7343
Author(s):  
Petr Volkov ◽  
Andrey Lukyanov ◽  
Alexander Goryunov ◽  
Daniil Semikov ◽  
Evgeniy Vopilkin ◽  
...  

The paper proposes a technology based on UV-LIGA process for microoptoelectromechanical systems (MOEMS) manufacturing. We used the original combination of materials and technological steps, in which any of the materials does not enter chemical reactions with each other, while all of them are weakly sensitive to the effects of oxygen plasma. This made it suitable for long-term etching in the oxygen plasma at low discharge power with the complete preservation of the original geometry, including small parts. The micromembranes were formed by thermal evaporation of Al. This simplified the technique compared to the classic UV-LIGA and guaranteed high quality and uniformity of the resulting structure. To demonstrate the complete process, a test MOEMS with electrostatic control was manufactured. On one chip, a set of micromembranes was created with different stiffness from 10 nm/V to 100 nm/V and various working ranges from 100 to 300 nm. All membranes have a flat frequency response without resonant peaks in the frequency range 0–200 kHz. The proposed technology potentially enables the manufacture of wide low-height membranes of complex geometry to create microoptic fiber sensors.


2021 ◽  
Vol 31 (37) ◽  
pp. 2170275
Author(s):  
Domenic Prete ◽  
Elisabetta Dimaggio ◽  
Valeria Demontis ◽  
Valentina Zannier ◽  
Maria Jesus Rodriguez‐Douton ◽  
...  

2021 ◽  
Vol 118 (32) ◽  
pp. e2107987118
Author(s):  
Jaemin Min ◽  
Ha Young Jung ◽  
Seungwon Jeong ◽  
Byeongdu Lee ◽  
Chang Yun Son ◽  
...  

Recently, the interest in charged polymers has been rapidly growing due to their uses in energy storage and transfer devices. Yet, polymer electrolyte-based devices are not on the immediate horizon because of the low ionic conductivity. In the present study, we developed a methodology to enhance the ionic conductivity of charged block copolymers comprising ionic liquids through the electrostatic control of the interfacial layers. Unprecedented reentrant phase transitions between lamellar and A15 structures were seen, which cannot be explained by well-established thermodynamic factors. X-ray scattering experiments and molecular dynamics simulations revealed the formation of fascinating, thin ionic shell layers composed of ionic complexes. The ionic liquid cations of these complexes predominantly presented near the micellar interfaces if they had strong binding affinity with the charged polymer chains. Therefore, the interfacial properties and concentration fluctuations of the A15 structures were crucially dependent on the type of tethered acid groups in the polymers. Overall, the stabilization energies of the A15 structures were greater when enriched, attractive electrostatic interactions were present at the micellar interfaces. Contrary to the conventional wisdom that block copolymer interfaces act as “dead zone” to significantly deteriorate ion transport, this study establishes a prospective avenue for advanced polymer electrolyte having tailor-made interfaces.


2021 ◽  
pp. 2104175
Author(s):  
Domenic Prete ◽  
Elisabetta Dimaggio ◽  
Valeria Demontis ◽  
Valentina Zannier ◽  
Maria Jesus Rodriguez‐Douton ◽  
...  

2021 ◽  
Author(s):  
Kevin Fabrizio ◽  
Konstantinos Lazarou ◽  
Lillian Payne ◽  
Liam Twight ◽  
Christopher H. Hendon ◽  
...  

<div> <div> <p>Titanium-based metal—organic frameworks (Ti-MOFs) attract intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers for co-catalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both charge storage and charge transfer depend on redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on co-catalysts rather than the intrinsic Ti reactivity in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd, Sr , and Ba ) or introduced to the pores (H, Li, Na, K) tune the electronic structure and band gaps of the MOFs. Through use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.</p> </div> </div>


2021 ◽  
Author(s):  
Kevin Fabrizio ◽  
Konstantinos Lazarou ◽  
Lillian Payne ◽  
Liam Twight ◽  
Christopher H. Hendon ◽  
...  

<div> <div> <p>Titanium-based metal—organic frameworks (Ti-MOFs) attract intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers for co-catalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both charge storage and charge transfer depend on redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on co-catalysts rather than the intrinsic Ti reactivity in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd, Sr , and Ba ) or introduced to the pores (H, Li, Na, K) tune the electronic structure and band gaps of the MOFs. Through use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.</p> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document