dental papilla cells
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Wang ◽  
Ran Tao ◽  
Li Zhao ◽  
Xin-Hui Hao ◽  
Yi Zou ◽  
...  

Bmp2 is essential for dentin development and formation. Bmp2 conditional knock-out (KO) mice display a similar tooth phenotype of dentinogenesis imperfecta (DGI). To elucidate a foundation for subsequent functional studies of cross talk between mRNAs and lncRNAs in Bmp2-mediated dentinogenesis, we investigated the profiling of lncRNAs and mRNAs using immortalized mouse dental Bmp2 flox/flox (iBmp2fx/fx) and Bmp2 knock-out (iBmp2ko/ko) papilla cells. RNA sequencing was implemented to study the expression of the lncRNAs and mRNAs. Quantitative real-time PCR (RT-qPCR) was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to predict functions of differentially expressed genes (DEGs). Protein–protein interaction (PPI) and lncRNA–mRNA co-expression network were analyzed by using bioinformatics methods. As a result, a total of 22 differentially expressed lncRNAs (16 downregulated vs 6 upregulated) and 227 differentially expressed mRNAs (133 downregulated vs. 94 upregulated) were identified in the iBmp2ko/ko cells compared with those of the iBmp2fx/fx cells. RT-qPCR results showed significantly differential expressions of several lncRNAs and mRNAs which were consistent with the RNA-seq data. GO and KEGG analyses showed differentially expressed genes were closely related to cell differentiation, transcriptional regulation, and developmentally relevant signaling pathways. Moreover, network-based bioinformatics analysis depicted the co-expression network between lncRNAs and mRNAs regulated by Bmp2 in mouse dental papilla cells and symmetrically analyzed the effect of Bmp2 during dentinogenesis via coding and non-coding RNA signaling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0233944
Author(s):  
Jiao Luo ◽  
Xiujun Tan ◽  
Ling Ye ◽  
Chenglin Wang

During tooth development, dental papilla cells differentiate into odontoblasts with polarized morphology and cell function. Our previous study indicated that the C-Jun N-terminal kinase (JNK) pathway regulates human dental papilla cell adhesion, migration, and formation of focal adhesion complexes. The aim of this study was to further examine the role of the JNK pathway in dental papilla cell polarity formation. Histological staining, qPCR, and Western Blot suggested the activation of JNK signaling in polarized mouse dental papilla tissue. After performing an in vitro tooth germ organ culture and cell culture, we found that JNK inhibitor SP600125 postponed tooth germ development and reduced the polarization, migration and differentiation of mouse dental papilla cells (mDPCs). Next, we screened up-regulated polarity-related genes during dental papilla development and mDPCs or A11 differentiation. We found that Prickle3, Golga2, Golga5, and RhoA were all up-regulated, which is consistent with JNK signaling activation. Further, constitutively active RhoA mutant (RhoA Q63L) partly rescued the inhibition of SP600125 on cell differentiation and polarity formation of mDPCs. To sum up, this study suggests that JNK signaling has a positive role in the formation of dental papilla cell polarization.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1098
Author(s):  
Jun Kang ◽  
Haoling Chen ◽  
Fuping Zhang ◽  
Tong Yan ◽  
Wenguo Fan ◽  
...  

Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 539
Author(s):  
Emil Anton ◽  
Bogdan Doroftei ◽  
Delia Grab ◽  
Norina Forna ◽  
Mihoko Tomida ◽  
...  

The presence of teeth on babies earlier than four months is a rare condition. Therefore, adequate treatment for each case should be instituted as soon as possible, considering that certain complications may arise. This report describes a rare case in which a newborn baby required the extraction of two mobile mandibular natal teeth to prevent the risk of aspiration. After two years, the clinical re-evaluation showed a residual tooth instead of a temporary one. This case report shows that adequate diagnosis should include a radiographic examination to determine whether these teeth are components of normal or supernumerary dentition, as well as further investigations on the relationship with the adjacent teeth. Another important aspect highlighted in this case report is the need for a post-extraction curettage of the socket in order to reduce the risk of ongoing development of the dental papilla cells.


Author(s):  
Yunyan Zhan ◽  
Haisheng Wang ◽  
Lu Zhang ◽  
Fei Pei ◽  
Zhi Chen

Odontoblast differentiation is an important process during tooth development in which pre-odontoblasts undergo elongation, polarization, and finally become mature secretory odontoblasts. Many factors have been found to regulate the process, and our previous studies demonstrated that autophagy plays an important role in tooth development and promotes odontoblastic differentiation in an inflammatory environment. However, it remains unclear how autophagy is modulated during odontoblast differentiation. In this study, we found that HDAC6 was involved in odontoblast differentiation. The odontoblastic differentiation capacity of human dental papilla cells was impaired upon HDAC6 inhibition. Moreover, we found that HDAC6 and autophagy exhibited similar expression patterns during odontoblast differentiation both in vivo and in vitro; the expression of HDAC6 and the autophagy related proteins ATG5 and LC3 increased as differentiation progressed. Upon knockdown of HDAC6, LC3 puncta were increased in cytoplasm and the autophagy substrate P62 was also increased, suggesting that autophagic flux was affected in human dental papilla cells. Next, we determined the mechanism during odontoblastic differentiation and found that the HDAC6 substrate acetylated-Tubulin was up-regulated when HDAC6 was knocked down, and LAMP2, LC3, and P62 protein levels were increased; however, the levels of ATG5 and Beclin1 showed no obvious change. Autophagosomes accumulated while the number of autolysosomes was decreased as determined by mRFP-GFP-LC3 plasmid labeling. This suggested that the fusion between autophagosomes and lysosomes was blocked, thus affecting the autophagic process during odontoblast differentiation. In conclusion, HDAC6 regulates the fusion of autophagosomes and lysosomes during odontoblast differentiation. When HDAC6 is inhibited, autophagosomes can't fuse with lysosomes, autophagy activity is decreased, and it leads to down-regulation of odontoblastic differentiation capacity. This provides a new perspective on the role of autophagy in odontoblast differentiation.


2020 ◽  
pp. 002203452097086
Author(s):  
J. Fu ◽  
H. Zheng ◽  
Y. Xue ◽  
R. Jin ◽  
G. Yang ◽  
...  

WW domain-containing E3 Ub-protein ligase 2 (WWP2) belongs to the homologous to E6AP C-terminus (HECT) E3 ligase family. It has been explored to regulate osteogenic differentiation, chondrogenesis, and palatogenesis. Odontoblasts are terminally differentiated mesenchymal cells, which contribute to dentin formation in tooth development. However, it remained unknown whether WWP2 participated in odontoblast differentiation. In this study, WWP2 was found to be expressed in mouse dental papilla cells (mDPCs), odontoblasts, and odontoblastic-induced mDPCs by immunohistochemistry and Western blotting. Besides, WWP2 expression was decreased in the cytoplasm but increased in the nuclei of differentiation-induced mDPCs. When Wwp2 was knocked down, the elevated expression of odontoblast marker genes ( Dmp1 and Dspp) in mDPCs induced by differentiation medium was suppressed. Meanwhile, a decrease of alkaline phosphatase (ALP) activity was observed by ALP staining, and reduced formation of mineralized matrix nodules was demonstrated by Alizarin Red S staining. Overexpression of WWP2 presented opposite results to knockdown experiments, suggesting that WWP2 promoted odontoblastic differentiation of mDPCs. Further investigation found that WWP2 was coexpressed and interacted with KLF5 in the nuclei, leading to ubiquitination of KLF5. The PPPSY (PY2) motif of KLF5 was essential for its physical binding with WWP2. Also, cysteine 838 (Cys838) of WWP2 was the active site for ubiquitination of KLF5, which did not lead to proteolysis of KLF5. Then, KLF5 was confirmed to be monoubiquitinated and transactivated by WWP2, which promoted the expression of KLF5 downstream genes Dmp1 and Dspp. Deletion of the PY2 motif of KLF5 or mutation of Cys838 of WWP2 reduced the upregulation of Dmp1 and Dspp. Besides, lysine (K) residues K31, K52, K83, and K265 of KLF5 were verified to be crucial to WWP2-mediated KLF5 transactivation. Taken together, WWP2 promoted odontoblastic differentiation by monoubiquitinating KLF5.


2020 ◽  
Author(s):  
Yue Zhang ◽  
Hao Zhang ◽  
Guohua Yuan ◽  
Guobin Yang

Abstract Background: An important biological process for dentin formation and mineralization is odontoblast differentiation, which is precisely governed by a series of transcription factors (TFs). Importin 7 (IPO7) is a member of the Karyopherin β-superfamily mediating nucleocytoplasmic transport of proteins. In this study, we aimed to study the mechanisms by which IPO7 participates in odontoblastic differentiation. Methods: The expression patterns of IPO7 was investigated by immunofluorescence staining. Besides, mouse dental papilla cells (mDPCs) were extracted and cultured. After silencing Ipo7 in mDPCs, odontoblastic differentiation and the effect on odontogenic TFs were evaluated. Using nuclear and cytoplasmic extraction and co-immunoprecipitation assay, we aimed to confirm that IPO7 imports some odontogenic transcriptions factors to promote odontoblastic differentiation.Results: We found that IPO7 was increasingly expressed from the pre-odontoblasts to mature odontoblasts from PN2 to PN9. IPO7 enhanced odontoblast differentiation in mDPCs and imported essential TFs for odontoblastic differentiation, such as Distal-less homeobox 3 (DLX3), Osterix (OSX), Krüppel-like factor 4 (KLF4) and P-SMAD1/5 except for RUNX2. Besides, only RUNX2 showed no obvious interaction with IPO7.Conclusion: In conclusion, our data demonstrated that IPO7 enhances odontoblast differentiation in mDPCs by selectively importing odontogenic TFs.


2020 ◽  
pp. 1-12
Author(s):  
Liulin Jiang ◽  
Fuping Zhang ◽  
Wenguo Fan ◽  
Miaomiao Zheng ◽  
Jun Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document