scholarly journals Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera

Author(s):  
Serpil GONCA
Author(s):  
Laureen Michelle Houllou ◽  
Robson Antonio Barbosa De Souza ◽  
Carolina Barbosa Malafaia ◽  
Débora Lorrane Montenegro da Paixão ◽  
Alisson Tito Bezerra de Araújo ◽  
...  

Metal nanoparticles are nanostructures that can be applied to biotechnology because they present different biological activities. Among them, the silver nanoparticles (AgNPs) are known to present antimicrobial activity allowing their application in several areas such as medicine and industry. The biological synthesis of AgNPs is ecologically correct and advantageous techniques. The objective of this work was to evaluate the synthesis of AgNps through the green synthesis using extracts of leaves of Tabebuia roseoalba and T. pentaphylla grown in vivo and in vitro. The nanoparticle synthesis solution was colorimetrically evaluated, and the nanoparticles were physically characterized. The results obtained demonstrate that both extracts of both Tabebuia species tested are able to synthesize AgNPs, however only when cultured under in vivo conditions. These data suggest that photosynthesis under natural conditions promotes the production of metabolites that are essential to green synthesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Vishal Banewar

Pyrazolines are well known and important nitrogen containing 5-membered heterocyclic compounds. In the present investigation, a series of various heteroaryl chalcones and pyrazolines were synthesized by condensing formylquinolines with diverse ketones. The newly synthesized 2-pyrazolines were characterized on the basis of elemental analysis and spectroscopic data. All of the newly synthesized target compounds were selected by the NCI forin vitrobiological evaluation. These active compounds exhibited broad spectrum of various biological activities. Most of the compounds showed potent activity.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Saravana Periaswamy Sivagnanam ◽  
Adane Tilahun Getachew ◽  
Jae Hyung Choi ◽  
Yong Beom Park ◽  
Hee Chul Woo ◽  
...  

AbstractThe aim of this work was to acquire even and sphere-shaped silver nanoparticles (AgNPs) using statistical design of experiment. AgNPs were produced by green synthesis method using deoiled


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2021 ◽  
Vol 16 (8) ◽  
pp. 38-49
Author(s):  
Siva Kumar Kandula ◽  
Satyanarayana Swamy Cheekatla ◽  
Venkata Satya Mahesh Kumar Metta ◽  
Venkata Rajagopal Saladi

Natural antioxidants, in particular phenolic derivatives, are used efficiently to combat against oxidative induced tissue damages. The objective of the study is to determine the antioxidant potential of methanolic extracts obtained from eight marine algal species (Enteromorpha compressa, Chaetomorpha antennina, Caulerpa racemosa, Caulerpa taxifolia, Sargassum vulgare, Padina tetrastromatica, Amphiroa fragilissima and Gracilaria corticata) by assessing their total phenolic content, DPPH scavenging assay, FRAP assay, H2O2 radical and superoxide radical scavenging activities. Among them, P.tetrastromatica, S.vulgare, E.compressa, C.taxifolia display significant antioxidant activities. Further, the aqueous extracts of these four algae are used for bioreduction of silver nitrate to silver nanoparticles (AgNPs) by green synthesis method at room temperature. UV-Visible spectrum revealed the surface plasmon resonance at 430 and 440nm. The characterizations of AgNPs by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies revealed the bioreduction and capping of AgNPs. XRD analysis elucidated the synthesized nanoparticles having face centered cubic crystalline geometry, with a mean size of 17 nm. The nanoparticles have better antimicrobial activity against cocci shaped than the rod shaped bacteria. The minimum inhibitory concentration and minimum bactericidal concentration exhibit more activity against S.aureus and B.cereus rather than E.coli.


Sign in / Sign up

Export Citation Format

Share Document