A walker-pusher inchworm actuator driven by two piezoelectric stacks

Author(s):  
Xuefeng Ma ◽  
Yingxiang Liu ◽  
Jie Deng ◽  
Shijing Zhang ◽  
Junkao Liu
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2021 ◽  
Vol 92 (4) ◽  
pp. 045008
Author(s):  
Zhangfan Xu ◽  
Song Pan ◽  
Lei Chen ◽  
Zhong Xiao

2013 ◽  
Vol 198 ◽  
pp. 633-638 ◽  
Author(s):  
Marek Płaczek

Work presents a proposal of an analysis method of the piezoelectric transducer. The considered system is a longitudinally vibrating single PZT plate. The main aim of this work is to designate characteristics of the considered PZT plate. Using constitutive equations of piezoelectric materials and an equation of the plates motion a matrix of characteristics of the system was obtained. Relations between mechanical and electrical parameters (forces, displacements, electric current and voltage) that describe behaviour of the system are included in the matrix of characteristics. A dynamic flexibility relation between the plates deformation and a force applied to the system is considered. A structural damping of the plates material was being taken into consideration and its influence on the plates dynamic flexibility is analysed. This work is an introduction to a task of analysis of complex systems. In future work the developed model and proposed mathematical algorithm will be used to analyse piezoelectric stacks. Non-classical methods will be used. It is a part of research works of Gliwice research centre related with an analysis and synthesis of mechanical and mechatronic systems [4-7,9,10,16-18]. Passive and active mechanical and mechatronic systems with piezoelectric transducers were analysed [1-3]. Works were also supported by computer-aided methods [8]. Both classical and non-classical methods were being considered. The discussed subject is important due to increasing number of applications of both simple and reverse piezoelectric phenomena in various modern technical devices.


2018 ◽  
Vol 8 (10) ◽  
pp. 1779 ◽  
Author(s):  
Xinnan Liu ◽  
Jianjun Wang ◽  
Weijie Li

This paper presents the dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator based on the linear piezo-elasticity theory. The solutions for two different kinds of piezoelectric stacks under external load were obtained using the displacement method. The effects of load frequency and load amplitude on the dynamic characteristics of the stacks were discussed. The analytical solutions were validated using the available experimental results in special cases. The proposed model is able not only to predict the output properties of the devices, but also to reflect the inner electrical and mechanical components, which is helpful for designing piezoelectric actuators and generators in a comprehensive manner.


Author(s):  
Yunlai Shi ◽  
Haichao Sun ◽  
Dingji Cheng ◽  
Jun Zhang ◽  
Yuyang Lin ◽  
...  

This paper presents a hybrid linear actuator using screw clamp operation principle. The actuator mainly consists of a hollow electromagnetic torque motor located between two clamping nuts, two hollow cylindrical shaped piezoelectric stacks symmetrically configured at two ends of the actuator and a feed-screw (also considered as the mover of the actuator) assembled throughout all the parts. The torque motor is symmetrically connected to two clamping nuts via two torsion coupling springs located at either end of the motor spindle. Two piezoelectric stacks can work independently to propel the opposing loads, which effectively take advantage of the anti-compression and non-tensile characteristics of piezoelectric element. The special feature of the actuator is the screw clamp mechanism, the operation of which involves intermittent rotation of two nuts (driven by the torque motor) on a feed-screw to achieve the bi-direction piezoelectric motion accumulation. Furthermore, the application of feed-screw could decrease the actuator’s sensitivity to wear, in order to realize a rigid self-locking and thus ensure the actuator’s holding capacity. A prototype was fabricated and the experimental results show that the no-load speed, maximum thrust, and peak power of the actuator were 20 mm/s, 280 N, and 1.54 W, respectively.


2019 ◽  
Vol 27 (5) ◽  
pp. 1128-1137 ◽  
Author(s):  
王凌云 WANG Ling-yun ◽  
黄 翔 HUANG Xiang ◽  
林四英 LIN Si-ying ◽  
林晓龙 LIN Xiao-long ◽  
林志鸿 LIN Zhi-hong

Author(s):  
Devdas Shetty ◽  
Claudio Campana ◽  
Nikolay Nazaryan ◽  
Louis Manzione

A great amount of research is being conducted to incorporate smart material actuators in aerospace applications such as (1) turbo fan engines (2) servo flap actuators for helicopter rotor control. For example, a piezoelectric stack actuator, coupled with mechanical or hydraulic amplification could provide the actuation required for the variable pitch fan system with a potentially higher level of reliability. In addition, piezoelectric actuation system could do so at a lower overall weight. However, there are limitations with existing piezoelectric stack actuators relative to power requirements. Therefore, a new approach has been investigated to improve these characteristics in order for piezoelectric stacks to be a feasible solution for these types of large scale applications. A new configuration involving dielectric, conductor, piezoelectric material in a particular sequence of stack actuation is examined and experimented. A nonlinear lumped parameter model of a piezoelectric stack has been developed to describe the behavior for the purpose of control actuation analysis.


2019 ◽  
Vol 28 (12) ◽  
pp. 125020 ◽  
Author(s):  
Liufeng Zhang ◽  
Xueping Xu ◽  
Qinkai Han ◽  
Zhaoye Qin ◽  
Fulei Chu

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuan Wang ◽  
Minglong Xu ◽  
Shubao Shao ◽  
Siyang Song ◽  
Yan Shao

A novel stick-slip rotary piezoelectric actuator is designed for optical use. The actuator is proposed, fabricated, and tested with the aim of realizing both fine resolution and a long stroke. The dynamic model of the actuator is established, and simulations are performed to discover how the input driving voltage affects the stick-slip motion of the actuator. An experimental system is built to evaluate the performance of the actuator at different frequencies, voltages, and numbers of driving piezoelectric stacks. Experimental results show that the minimal output stepping angle is 3.5 μrad (0.2 millidegrees) under a sawtooth waveform having a voltage of 13 V and frequency of 3000 Hz and that the velocity reaches 0.44 rad/s (25°/s) under a sawtooth waveform having a voltage of 93 V and frequency of 3000 Hz, while the stroke is infinite. The proposed actuator provides stable and accurate rotary motion and realizes a high velocity.


Sign in / Sign up

Export Citation Format

Share Document