scholarly journals Effective thermal conductivity of loose residual coal in goaf: Comparative analysis of experiment and model

2022 ◽  
pp. 014459872110695
Author(s):  
Chunhua Zhang ◽  
Jiahui Shen ◽  
Mei Wan

The effective thermal conductivity (ETC) model of loose residual coal in goaf is a method to study the heat transfer law of spontaneous combustion in goaf. In order to study the effect of coal particle size and ambient temperature on heat transfer, coal samples of different sizes were taken from the FuSheng (FS) mine, and the void fraction, the thermal conductivity (TC) of the residual coal under different ambient temperature were tested. Additionally, four types of ETC models of loose residual coal in goaf were obtained and the average relative errors of the TC were analyzed. The results showed that the void fraction, the coal particle size and ambient temperature have different effects on the spontaneous combustion of the residual coal. The effect of coal sample size on the heat transfer is 100 times that of the ambient temperature. The changes in the ETC and average relative error of the different models were consistent. The heat transfer in the spontaneous combustion of residual coal has a direct relationship with the spatial distribution and heat transfer modes of the loose residual coal in the goaf.

2021 ◽  
Author(s):  
Ruifeng CAO ◽  
Taotao WANG ◽  
Yuxuan ZHANG ◽  
Hui WANG

Improved heat transfer in composites consisting of guar gel matrix and randomly distributed glass microspheres is extensively studied to predict the effective thermal conductivity of composites using the finite element method. In the study, the proper and probabilistic three-dimensional random distribution of microspheres in the continuous matrix is automatically generated by a simple and efficient random sequential adsorption algorithm which is developed by considering the correlation of three factors including particle size, number of particles, and particle volume fraction controlling the geometric configuration of random packing. Then the dependences of the effective thermal conductivity of composite materials on some important factors are investigated numerically, including the particle volume fraction, the particle spatial distribution, the number of particles, the nonuniformity of particle size, the particle dispersion morphology and the thermal conductivity contrast between particle and matrix. The related numerical results are compared with theoretical predictions and available experimental results to assess the validity of the numerical model. These results can provide good guidance for the design of advanced microsphere reinforced composite materials.


2011 ◽  
Vol 48 (4) ◽  
pp. 532-542 ◽  
Author(s):  
Marie-Hélène Fillion ◽  
Jean Côté ◽  
Jean-Marie Konrad

This paper presents an experimental study on thermal radiation and the thermal conductivity of rock-fill materials using a 1 m × 1 m × 1 m heat transfer cell. Testing temperatures are applied by temperature-controlled fluid circulation at the top and bottom of the sample. Heat flux and temperature profiles are measured to establish the effective thermal conductivity λe, which includes contributions from both conduction and radiation heat transfer mechanisms. The materials studied had an equivalent particle size (d10) ranging from 90 to 100 mm and porosity (n) ranging from 0.37 to 0.41. The experimental results showed that thermal radiation greatly affects the effective thermal conductivity of materials with λe values ranging from 0.71 to 1.02 W·m−1·K−1, compared with a typical value of 0.36 W·m−1·K−1 for conduction alone. As expected, the effective thermal conductivity increased with particle size. An effective thermal conductivity model has been proposed, and predictions have been successfully compared with the experimental results. Radiation heat transfer becomes significant for d10 higher than 10 mm and predominant at values higher than 90 mm. The results of the study also suggest that the cooling potential of convection embankments used to preserve permafrost conditions may not be as efficient as expected because of ignored radiation effects.


Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


2009 ◽  
Vol 38 (11) ◽  
pp. 2218-2223 ◽  
Author(s):  
Alex Sandro Campos Maia ◽  
Roberto Gomes da Silva ◽  
João Batista Freire de Souza Junior ◽  
Rosiane Batista da Silva ◽  
Hérica Girlane Tertulino Domingos

The objective of the present study was to assess the effective thermal conductivity of the hair coat (k ef, mW.m-1.K-1) of Holstein cows in a tropical environment, as related to conduction and radiation in the absence of free convection. The average k ef was 49.72 mW.m-1.K-1, about twice the conductivity of the air (26 mW.m-1.K-1) and much less than that of the hair fibres (260 mW.m-1.K-1). The low k ef values were attributed mainly to the small cross area of individual hairs, ρef/ρf (17.2% and 21.3% for black and white hairs, respectively). White coats were denser, with longer hairs and significantly higher k ef (53.15 mW.m-1.K-1) than that of the black hairs (49.25 mW.m-1.K-1). The heritability coefficient of the effective thermal conductivity was calculated as h²=0.18 the possibility was discussed of selecting cattle for increased heat transfer through the hair coat.


2019 ◽  
Vol 141 (1) ◽  
Author(s):  
Yuntao Cui ◽  
Yujie Ding ◽  
Shuo Xu ◽  
Yushu Wang ◽  
Wei Rao ◽  
...  

Gallium-based liquid metal (LM) inherits excellent thermophysical properties and pollution-free characteristics. However, it has long been a fatal problem that LM would cause serious corrosion and embrittlement on the classical substrate made of aluminum alloys in constructing chip cooling device. Here, anodic oxidation treatment was introduced on processing the aluminum alloy aiming to tackle the corrosion issues. The prepared anodic oxidation aluminum (AAO) coatings were composed of nanopore layers and barrier layers on a high-purity alumina matrix that were manufactured electrochemically. According to the measurement, the effective thermal conductivity of the anodized aluminum alloy increases with the total thickness of sample increasing. When the total thickness L exceeds 5 × 10−3 m, effects of the porous media on effective thermal conductivity are negligible via model simulation and calculation. It was experimentally found that aluminum alloy after surface anodization treatment presented excellent corrosion resistance and outstanding heat transfer performance even when exposed in eutectic gallium–indium (E-GaIn) LM over 200 °C. The convective heat transfer coefficient of LM for anodized sample reached the peak when the heat load is 33.3 W.


2021 ◽  
Author(s):  
Chase Ellsworth Christen

Solid particles are being considered in several high temperature thermal energy storage systems and as heat transfer media in concentrated solar power (CSP) plants. The downside of such an approach is the low overall heat transfer coefficients in shell-and-plate moving packed bed heat exchangers caused by the inherently low packed bed thermal conductivity values of the low-cost solid media. Choosing the right particle size distribution of currently available solid media can make a substantial difference in packed bed thermal conductivity, and thus, a substantial difference in the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers. Current research exclusively focuses on continuous unimodal distributions of alumina particles. The drawback of this approach is that larger particle sizes require wider particle channels to meet flowability requirements. As a result, only small particle sizes with low packed bed thermal conductivities have been considered for the use in the falling-particle Gen3 CSP concepts. Here, binary particle mixtures, which are defined in this thesis as a mixture of two continuous unimodal particle distributions leading to a continuous bimodal particle distribution, are considered to increase packed bed thermal conductivity, decrease packed bed porosity, and improve moving packed bed heat exchanger performance. This is the first study related to CSP solid particle heat transfer that has considered the packed bed thermal conductivity and moving packed bed heat exchanger performance of bimodal particle size distributions at room and elevated temperatures. Considering binary particle mixtures that meet particle sifting segregation criteria, the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers can be increased by 23% when compared to a monodisperse particle system. This work demonstrates that binary particle mixtures should be seriously considered to improve shell-and-plate moving packed bed heat exchangers.


2016 ◽  
Vol 846 ◽  
pp. 500-505
Author(s):  
Wei Jing Dai ◽  
Yi Xiang Gan ◽  
Dorian Hanaor

Effective thermal conductivity is an important property of granular materials in engineering applications and industrial processes, including the blending and mixing of powders, sintering of ceramics and refractory metals, and electrochemical interactions in fuel cells and Li-ion batteries. The thermo-mechanical properties of granular materials with macroscopic particle sizes (above 1 mm) have been investigated experimentally and theoretically, but knowledge remains limited for materials consisting of micro/nanosized grains. In this work we study the effective thermal conductivity of micro/nanopowders under varying conditions of mechanical stress and gas pressure via the discrete thermal resistance method. In this proposed method, a unit cell of contact structure is regarded as one thermal resistor. Thermal transport between two contacting particles and through the gas phase (including conduction in the gas phase and heat transfer of solid-gas interfaces) are the main mechanisms. Due to the small size of particles, the gas phase is limited to a small volume and a simplified gas heat transfer model is applied considering the Knudsen number. During loading, changes in the gas volume and the contact area between particles are simulated by the finite element method. The thermal resistance of one contact unit is calculated through the combination of the heat transfer mechanisms. A simplified relationship between effective thermal conductivity and loading pressure can be obtained by integrating the contact units of the compacted powders.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Swaren Bedarkar ◽  
Nurni Neelakantan Viswanathan ◽  
Nidambur Bharatha Ballal

Heat transfer in packed beds and their thermal response have been of great interest for scientists and engineers for the last several years, since they play a crucial role in determining design and operation of reactors. Heat transfer of a packed bed is characterised through lumped parameter, namely, effective thermal conductivity. In the present studies, experiments were performed to investigate the thermal conductivity of a packed bed in radial direction. The packed bed was formed using iron ore particles. To determine the effective thermal conductivity a new transient methodology is proposed. The results obtained were compared with the models proposed by ZBS and Kunii and Smith.


Sign in / Sign up

Export Citation Format

Share Document