Anisotropic thermal conductivity and corrugated patterns in single-layer black phosphorus nanoribbon subjected to shear loading: a molecular dynamics study

Author(s):  
Maryam Mahnama ◽  
Mostafa Meshkinghalam ◽  
Masoumeh Ozmaian

Abstract Single-layer black phosphorus (SLBP) also known as phosphorene is a recently introduced two-dimensional material with unique structure and promising physical properties that has drawn considerable attention in the field of nanodevices. This structure demonstrates a high anisotropy in mechanical and thermal behavior along zigzag (ZZ) and armchair (AC) principal in-plane directions. Here in this study, it is shown that implementing shear strain on 10nm×50nm SLBP nanoribbons (SLBPNRs) along ZZ and AC directions, the anisotropy leads to different corrugated patterns on the pristine structure. Applying non-equilibrium molecular dynamics under a parameterized Stillinger-Weber potential for modelling SLBP, thermal conductivity (TC) behavior of the sheared SLBPNRs with corrugated patterns are examined. The results show a higher amplitude and wavelength of the corregations on the ZZ-alighned SLBPNRs, which is around two times higher than that of AC-alighned counterparts. Although, it is also shown that unlike some other 2D materials, such as graphene, the wrinkling does not have such a significant effect on TC of SLBP. The phonon density of states results obtained in this work as well as phonon dispersion curves by first-principle calculations in other works concrete this finding. The results show small frequency shifts in both high- and low-frequency phonons, which are not strong enough to affect TC in SLBPNRs. This interesting thermal propertiy of SLBP under shear strain suggests the great potential application of these corrugated structures in nanodevices without any loss of TC abilities.

2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Li ◽  
Qiancheng Rui ◽  
Xiwen Wang ◽  
Wei Yu

A non-equilibrium molecular dynamics simulation method is conducted to study the thermal conductivity (TC) of silicon nanowires (SiNWs) with different types of defects. The impacts of defect position, porosity, temperature, and length on the TC of SiNWs are analyzed. The numerical results indicate that SiNWs with surface defects have higher TC than SiNWs with inner defects, the TC of SiNWs gradually decreases with the increase of porosity and temperature, and the impact of temperature on the TC of SiNWs with defects is weaker than the impact on the TC of SiNWs with no defects. The TC of SiNWs increases as their length increases. SiNWs with no defects have the highest corresponding frequency of low-frequency peaks of phonon density of states; however, when SiNWs have inner defects, the lowest frequency is observed. Under the same porosity, the average phonon participation of SiNWs with surface defects is higher than that of SiNWs with inner defects.


Author(s):  
Zhiting Tian ◽  
Sang Kim ◽  
Ying Sun ◽  
Bruce White

The phonon wave packet technique is used in conjunction with the molecular dynamics simulations to directly observe phonon scattering at material interfaces. The phonon transmission coefficient of nanocomposites is examined as a function of the defect size, thin film thickness, orientation of interface to the heat flow direction. To generalize the results based on phonons in a narrow frequency range and at normal incidence, the effective thermal conductivity of the same nanocomposite structure is calculated using non-equilibrium molecular dynamics simulations for model nanocomposites formed by two mass-mismatched Ar-like solids and heterogeneous Si-SiCO2 systems. The results are compared with the modified effective medium formulation for nanocomposites.


2018 ◽  
Vol 123 (20) ◽  
pp. 205104 ◽  
Author(s):  
Mohamed S. El-Genk ◽  
Khaled Talaat ◽  
Benjamin J. Cowen

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Li Wei ◽  
Feng Yanhui ◽  
Peng Jia ◽  
Zhang Xinxin

The thermal conductivity of carbon nanotubes with Stone-Wales (SW) defects was investigated using non-equilibrium molecular dynamics method. The defect effects were analyzed by the temperature profile and local thermal resistance of the nanotubes with one or more SW defects and further compared with perfect tubes. The influences of the defect concentration, the length, the chirality and the radius of tubes and the ambient temperature were studied. It was demonstrated that a sharp jump in the temperature profile occurred at defect position due to a higher local thermal resistance, thus dramatically reducing the thermal conductivity of the nanotube. As the number of SW defects increases, the thermal conductivity decreases. Relative to the chirality, the radius has greater effects on the thermal conductivity of tubes with SW defects. With the similar radius, the thermal conductivity of armchair nanotube is higher than that of zigzag one. The shorter nanotube is more sensitive to the defect than the longer one. Thermal conductivity of the nanotube increases with ambient temperature, reaches a peak, and then decreases with increasing temperature.


Author(s):  
Arian Mayelifartash ◽  
Mohammad Ali Abdol ◽  
Sadegh Sadeghzadeh

In this paper, by employing non-equilibrium molecular dynamics simulations (NEMD), the thermal conductance of hybrid formed by polyaniline (C3N) and boron carbide (BC3) in both armchair and zigzag configurations has...


2019 ◽  
Vol 21 (24) ◽  
pp. 12977-12985 ◽  
Author(s):  
Jieren Song ◽  
Zhonghai Xu ◽  
Xiaodong He ◽  
Yujiao Bai ◽  
Linlin Miao ◽  
...  

The thermal conductivities of single-layer BC3 (SLBC) sheets and their responses to environmental temperature, vacancy defects and external strain have been studied and compared with those of single-layer C3N (SLCN) sheets by molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document